

一般社団法人 東京形成歯科研究会 2016年

会報誌

Tokyo Plastic Dental Society

発行年月日 平成28年10月29日

Contents

- ●プログラム・抄録集
 - 2016 年度 第 4 回 再生医療 血液臨床応用 国際特別講演会
- 2016 年 論文集
- 2015 · 2016 年 活動報告
 - ☞一般社団法人 東京形成歯科研究会

一般社団法人 東京形成歯科研究会

一般社団法人東京形成歯科研究会 2016 年 会報誌 特集号

谷 明日	IP
2016 年度 第4回「再生医療 血液臨床応用 国際特別講演会」プログラム・抄録集	
挨拶 Greeting ······	3P
祝辞 Congratulatory Speech	4∼7P
開催概要 Event Outline	8P
会場(国際特別講演会) Contribution	9•10P
スケジュール(国際特別講演会) Schedule	11~13P
昼食·懇親会 会場 Contribution (lunch/Dinner)	14P
抄録 Abstract ·····	15~27P
企業展示案内 Guidance of the company display	28P
出展企業問合せ先 Exhibition company reference	· 29•30P
広告掲載 Insertion ······	31~44P
一般社団法人 東京形成歯科研究会 2016年 論文集	
•Basic characteristics of plasma rich in growth factors (PRGF):blood cell components and biological effects	45~52P
•Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich	
fibrin (A-PRF), and concentrated growth factors (CGF)	53~58P
\bullet Enhancement of mechanical strength and in vivo cytocompatibility of porous β -tricalcium phosphate ceramics by gelatin coating	59~64P
一般社団法人 東京形成歯科研究会 2015・2016年 活動報告	
挨拶 Greeting ·····	67P
JSOI「専門医」試験(2015 年度) 合格者の声 Voice of the passer	· 68•69P
JSOI「ケースプレゼンテーション」試験 (2015 年度) 合格者の声 Voice of the passer	70P
TPDS 主催 JSOI 認定講習会(2015 年度_) 受講者の声 Voice of the student attending a lecture	71P
TPDS 主催 学術大会 Academic meeting hosted by TPDS	72P
学会活動•海外 Society activity in foreign countries	73P
TPDS 主催 研修施設セッション Conference Presentation	74~76P
学会発表(ロ頭発表 及び ポスター発表) Conference Presentation	77~80P
共同研究(TPDS×新潟大学) Cooperative Research	· 81•82P
LIVE サージェリー/Hands On Live Surgery/Hands On	83~86P
親睦会 Social gathering	87P
"法人格(一般社団法人)"取得 The acquisition of the juridical person	88P
"認定再生医療等委員会"認定 Authorization certificate	88P
再生医療新法 施行 The enforcement of the law	89~90P
特定細胞加工物製造の届出/再生医療等提供計画の提出	
"無菌操作区域=クリーンベンチ"「PRP 等における操作 BOX」の案内	
役員名簿 List of the officer	91P

一般社団法人 東京形成歯科研究会 施設長・理事長/国際血液・幹細胞臨床応用会議 (ISBB) チェアマン 王子歯科美容外科クリニック 総院長 医学博士 **奥寺 元**

安心・安全・迅速に組織再生の効果を求めて Seeking the effect of safe and secure rapid tissue regeneration

マイアミ大学ミラー医学部外科博士ロバート e. マルクス教授から、本紙にも直接挨拶状が載っております。20年前、血小板血 漿療法を提言してから、ケアの標的が進み、今となっては、整形外科、皮膚科、形成外科の分野で数百万人を助けています。その 起源は歯で特に、口腔インプラント治療において必要性から研究研鑚し発展したことに間違いありません、と大変誇りに感じていることのメッセージを頂きました。思えば、私どもは 1992 年米国で行われたアインシュタイン大学の Prof.RICHARD KRAUT の LIVE コースに出かけた時にその理論を継承した。Prof. RICHARD KRAUT から学び、その後 Prof. ROBERTE MARX の大学や 研究会を訪れて、また数々の会で招聘して研鑚をしてきました。MARX はその後 PRP 学会を立ち上げて、発展的に組織再生 BMP 会議などを立ち上げて活発に情報発信して来ました。その理論に基づいて世界各国で、開発が行われ、現在で多種多様なデバイス と共に素材が有ります。わが日本おいても 2008 年ごろから ISBB 国際血液・幹細胞臨床応用会議の PRP 研究会を組織して活動をしてきました。現在では、種々の名称や効果で華やかではありますが、その原点は血液由来の PRP 派生物質であることは間違いありません。特に画期的なものではないことを認識しなければなりません。100 年前から血液学の理論は存在していたことにも冷静さと科学的視野が必要と考えられます。一種の流行に終わらせることがないように、必要なことは、不足している臨床的なエビデンスを作り上げなければなりません。私どもは、日本で緻密な研究を進めており、より的確な PRP 臨床を作り上げることを目的にこのような会を企画構成しております。これらの治療は日本では再生医療新法の第 3 種に適用となり、すでに後戻りできない現状が有ります。今一つ学会、厚労省に動きが見えないこの時期の大会は大変重要です。現在この様な大会活動は日本で唯一と自負しており、その使命感を理解して頂ければ、一開業医のグループが医学発展のための努力が報いられた事と成れば幸いです。

From the University of Miami Miller School of Medicine, Surgery, Dr. Robert e. Marx Professor, we have also directly to the actual paper greeting card is listed. 20 years ago, since the recommendations of the platelet-rich plasma therapy, progressed target of care, it has now become, orthopedics, dermatology, helping millions of people in the field of orthopedic surgery.

Its origin has received a message of what is felt to research Research was very proud and there is no doubt in that it has evolved from the need in particular in the teeth, oral implant treatment. Think if, We are Prof. AinStein University that have been made in the United States 1992 It inherited the theory when I went to LIVE course of RICHARD KRAUT. Learn from Prof RICHARD KRAUT that your Prof. Visiting and Study Group University of ROBERTE MARX, also has been the training process and invited in a number of meeting. MARX has come will actively disseminate information to launch start-up to and subsequent development to tissue regeneration BMP2 conference that your PRP Society. In countries around the world is Not a basis of the theory, to develop. Material is there along with the wide variety of devices in the current. Our Japan nephew also has been the activities organized the PRP Study Group of ISBB international blood regeneration clinical applications stem cell conference from around 2008. Has various names and effects in glamorous now, its origin is no doubt that PRP derived substances from the blood. Must recognize that is not particularly innovative. From the blood of 100 years ago theory existed that calmness and a scientific perspective you foresee. Not to end in a kind of epidemic, you need Domoto clinical evidence is missing. Toward the study of Japan we make better and PRP clinical purposes this kind of planning and we. Japan play new three and include any of these treatments, there are already irreversible situation. One of the Labor Congress can't see movement in the province at this time is very important. It consist in 1 practitioner group for medical development efforts were rewarded and understand the sense of mission and current activities such as competitions in Japan and Yuichi have pride.

2016 年度

第4回

「再生医療 血液臨床応用 国際特別講演会」

一般社団法人 東京形成歯科研究会

国際血液·幹細胞臨床応用会議(ISBB)

一般社団法人 東京形成歯科研究会 会長 古谷田歯科医院 院長 古谷田 泰夫

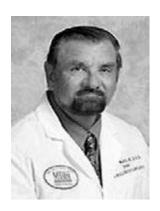
最高の歯科診療の提供を目指すものとして

「歯科医療はサービス業である」とされている。歯科医療に於けるサービスとは何なのだろう。突き詰めるにサービスとは「質の高い医療の提供」に尽きる。つまり治療や様々な処置の内容そのものが良質な医療であること。安心出来る環境をスタッフ共々提供することがサービスとなるのだろう。日々新たな事象や術式の開発、経過などに疑問や疑いを持ち、更なる研鑽を続けることが「質の高い医療の提供」に繋がると確信する。これが患者満足度を上げることにも繋がっている。インプラント治療は歯科医療サービスが提供される最も重要な場といえる。研鑽を重ねてきた知識と術式。痛くない手術等と安心できる場所の提供で患者さんの満足度も大きく変わる。また骨造成は多くの症例に付き纏う。自己血液から加工する多血小板フィブリン(PRF・CGF)や多血小板血漿(PRP・PRGF)を使用することで「自分の血液」ということが患者さんの安心感を増大する。「質の高い医療の提供」を提供する立場から言うとその安定した結果から見ても施術側にも安心感が生まれる。先生方の中には、骨補填材と血液を混合し使用しても同等の結果が出るとして使用しない先生も居られる。大学のインプラント診療科においても器材購入や施術に係る手間暇から導入を見合わせる処もある。また厚労省・委員会に届ける書類の煩雑さから踏み込めない先生もいる。開業医の意見の一つとして、術後の予後の安定感・患者差別化・経費から見ても有効で且つ重要な処置であると認識している。今後より多くの先生方に取り入られるためには、厚労省や委員会に提出する書類は無くならないだろうから、目に見えて差異が生まれるような知識や術式の開発に期待する処であり、その情報はこのシンボジウムに一人でも多くの先生に参加頂き、知識・情報そして交流の場として戴けたらと思う次第である。

東京大学大学院医学系研究科外科学専攻 感覚・運動機能医学講座 口腔外科学分野 教授 東京大学医学部附属病院 ティッシュ・エンジニアリング部 部長 東京大学医学部附属病院 22世紀医療センター センター長

髙戸 毅

2016年度第4回 再生医療 血液臨床応用 特別講演会開催にあたって


再生医療は、細胞あるいは生体の再生能力を利用して、失われた組織の形態や機能の回復を図る医療です。従来にはない革新的な治療法が生み出される可能性に、医学界のみならず世間の関心も高まっています。近年では、ヒト人工多能性幹細胞(iPS 細胞)や各種幹細胞の臨床応用、シート工学の発展や 3D プリンティングの開発に加え、がん免疫療法や各種幹細胞を用いた細胞治療など、目覚ましい展開が見られます。今後、再生医療を導入した医療技術開発は、より多くの領域で更に発展していくものと思われます。

その一方で、開発された再生医療技術がなかなか製品化に結びつかず、治療法として広まらない傾向がありました。その背景には、再生医療がオーダーメイド医療であるがゆえに抱えるコストや安全面での課題に加え、本邦における再生医療等製品に対する法規制の在り方が議論されてきました。そのような中で、平成26年11月25日に医薬品医療機器法(旧薬事法)や再生医療等の安全性の確保等に関する法律が施行され、本邦の再生医療の臨床応用の加速化が進んでいます。

口腔領域においても、う蝕、歯周病による歯や歯周組織の喪失、口唇口蓋裂などの先天異常に伴う骨・軟骨の低形成や欠損、腫瘍や外傷による骨・軟骨および軟部組織の欠損、ドライマウスなど、ほぼすべての疾患が再生医療の対象となり得ます。この中でも、デンタル・インプラント植立や歯周病治療における PRP や PRF などを始めとする血液成分を用いた骨再生補助療法や、脂肪組織由来幹細胞による歯周組織再生は、ますます注目されています。

本講演会も、先生方の再生医療に対する関心の高さから、第4回目の開催を迎えることとなりました。参加される先生方が、血 液成分を用いた再生療法に関する知見を深められ、より優れた再生医療の発展への礎とされることと期待します。 Professor of Surgery and Chief
University of Miami Miller School of Medicine
Division of Oral and Maxillofacial Surgery

Robert E. Marx, DDS

お祝いの挨拶 Greetings of the celebration

約20年前から、多血小板血漿 Platelet Rich Plasma は、傷疾ケアの標準となっており、整形外科、皮膚科、形成外科の分野で何百万人もの人々に処置されてきました。

しかし、その起源は、"歯科"にありました。

その他の分野でも多くの優秀な外科医や、あなたたちのような専門の研究者に、このように重大な有益な影響を与えました。 私は会議に出席することはできませんが、すべての参加者を祝福し、会議が成功することを願っています。

From its humble beginnings twenty years ago, Platelet Rich Plasma has become a standard of care and has helped millions of people in the orthopedic, dermatology, and plastic surgery arena. However, its origins were in dentistry and in no other area has it had such a profound beneficial impact thanks to many precise surgeons and dedicated researchers such as yourself. While I cannot attend to the conference, I congratulate the organizers and all the participants and wish you a successful meeting.

公益社団法人 日本口腔インプラント学会 理事長

渡邉 文彦

「2016年度第4回再生医療血液臨床応用特別講演会」開催にあたり

公益社団法人 日本口腔インプラント学会は歯科医療領域における口腔インプラント学の学術研究の推進と国民への口腔インプラント医療を通した全身の健康維持、改善する使命を有しております。はじめに皆様からの私共の学会へのご支援、ご協力に対しまして心から感謝申し上げます。

一昨年 10 月に「再生医療等の安全確保等に関する法律、再生医療等の安全性の確保等に関する法律施行令及び再生医療等の安全性の確保等に関する法律」が厚生労働省医政局研究開発振興課より通告され、施行されました。これは口腔インプラント治療を行う我々にも非常に関心が高いところであり、臨床応用を行っている PRP 多結晶板血漿がこの対象となります。 PRP の臨床応用は組織の造成、治癒に有用であることが明らかになっております。 PRP は第3種再生医療等に分類され、今後これを使用する場合は、計画書を提出し再生医療提供基準に合致するか認定再生医療委員会による審査を受けて、使用することになります。

この度、国内外から講師を招聘し、国際特別講演会が一般社団法人日本再生医療学会副理事長で東京大学大学院医学系研究科 高戸 毅教授、一般社団法人東京形成歯科研究会理事長および施設長 奥寺 元先生をコーディネーターとして東京大学医学系研究教育棟 鉄門記念講堂で開催されることとなりました。本講演会を企画されました奥寺 元先生には常日頃学会活動の活性化や、若い先生方の教育等に多大なご尽力を頂いております。この場をお借りしてお礼申し上げます。本講演会が盛況に開催されますこと、および先生方がこの講演を糧に確実でより信頼される医療を目指されることを祈念して開催のお祝いとさせて頂きます。

一般財団法人日本美容医学研究会 一般社団法人日本美容外科学会 会頭

梅澤 文彦

昨年に続き、一般社団法人日本再生医療学会の後援を得て、日本の再生医学の殿堂である東京大学鉄門記念講堂にて「再生医療 血液臨床応用 国際特別講演会」を開催されることに多大な敬意を申し上げます。

コーディネイターの奥寺元先生は私ども一般社団法人日本美容外科学会とも深く携わっておられ、また、この講演会は再生医療 新法にかかわる講演と認識しており、この法律は施行されたばかりでまさにリアルタイムで開催されることは、喜ばしい限りでご ざいます。

今回は、国際的に美容外科領域で活躍している韓国の Dr.Lim Jong Hak による "PRP を用いた" LIVE サージェリーも開催されるとお聞きしており、歯科界にも私共美容外科についての理解を深めていただく、またとない機会になるのではないかと期待しております。

時代は"美しく、若々しく、健康に"という幸福の医学が求められており、美容外科においては既に浸透していることと認識しております。その第一線で活躍しているのが一般社団法人日本美容外科学会 JSAS でございます。近年、再生医療が人類の健康増進と福祉の向上に貢献するようになるという流れをくみ、各学会のエビデンスを求めながら、美容外科においても臨床応用が行われております。特に、再生医療新法において第3種に適用される血液臨床応用"PRP"等について、私ども日本美容外科学会でも積極的に研究発表しております。この過程では、一党一派にとらわれず、約10年前から口腔外科領域とコラボレーションしており、その結果、幅広い分野で臨床応用が盛んに実施されることとなりました。この講演会に美容外科関係者も参加して、再生医療が更なる発展を遂げることを心らから望みます。

講演会名称 2016年度 第4回 再生医療 血液臨床応用 国際特別講演会

テーマ 再生医療新法施行 自己血由来の成長因子を用いた再生療法 ~その理論と実際~ 米国編/日本編

主 催 一般社団法人 東京形成歯科研究会 (TPDS) /国際血液・幹細胞臨床応用会議 (ISBB)

一般社団法人 日本再生医療学会/東北口腔インプラント研究会/一般社団法人 日本美容外科学会/ 後 援

韓國美容外科醫學會(Korea Academy of Aesthetic Surgery and Medicine)

開催日程 2016年10月30日(日曜日) 9:30~17:.00 ※時間帯は変更となる場合がございます。

開催場所 東京大学 医学部研究科教育研究棟 14F 鉄門記念講堂

〒113-8654 東京都文京区本郷 7-3-1 TEL.03-3812-2111(代表)

参加登録費 一般 25,000 円 / 一般社団法人 東京形成歯科研究会 無料

主催責任者 一般社団法人 東京形成歯科研究会 施設長·理事長

国際血液・幹細胞臨床応用会議(ISBB) チェアマン 医学博士 奥寺 元

本講演会の目的と開催意義

再生医療新法施行により PRP 血液製剤臨床応用等が再生治療として導入されましたが、未だにその明確なエビデンスがない状況で あり、研究研鑽が必要とされます。まして、安全・安心の手技についても情報不足であるため、より安全・安心そして臨床効果の ある、このような講演会を今後も継続して提供してまいります。

本講演会 過去の開催

開催年	開催地	テーマ/学会名称	
2003	東京	PRP 至摘条件の臨床的意義 他	
₹	?	}	
2013	ソウル	The 1st Congress of Asia Anti-Aging&Regenerative Medicine	
2014	パリ	SYFAC 第 7 回国際 Growth Factors	
2014	東京	血液再生材料臨床応用・PRF・PRP製作、PRF・PRP・トロンビン応用について他	
2014	仙台	アジア・パシフィックアカデミーインプラントロ腔医学会他	
2015	東京	血液生体材料臨床応用における PRP 及び PRF 各種 Growth Factor の基礎と臨床、再生	
		新法の解釈と実地について他	
2015	東京	再生医療新法施行 自己血由来の成長因子を用いた再生療法 ~その理論と実際~	
2016	東京	歯根膜細胞シートを用いた歯周組織再生治療と歯根膜つきインプラントの可能性に	
		ついて	
2016	東京	インプラント周囲組織、オッセオインテグレーション、バイオインテグレーション、分	
		子生物学ついて/PRP	
2016	東京	骨補填材の臨床応用/PRP・PRF	

実行委員会メンバー:

○実行委員長(事務局長兼務): 奥寺 元(一般社団法人 東京形成歯科研究会 施設長・理事長/国際血液・幹細胞臨床応用会議 ISBB チェアマン/公益社団法人日本口腔インプラント学会元理事 代議員/ICOI元会長)

○実行副委員長:古谷田 泰夫(一般社団法人 東京形成歯科研究会 会長)

○実行副委員長:柳 時悦(一般社団法人 東京形成歯科研究会 監事)

○運営担当:押田 浩文(一般社団法人東京形成歯科研究会 事務局)

東京大学 本郷キャンパス 医学部研究科教育研究棟 鉄門記念講堂

〒113-8654 東京都文京区本郷 7-3-1 東京大学医学部教育研究棟 14 階 TEL.03-3812-2111(代表)

■最寄り駅

都営地下鉄『大江戸線・本郷三丁目駅』4番出口より『懐徳門』経由徒歩2分 東京メトロ地下鉄『丸ノ内線・本郷三丁目駅』2番出口より『懐徳門』経由徒歩5分

■最寄り門

『龍岡門』より徒歩1分

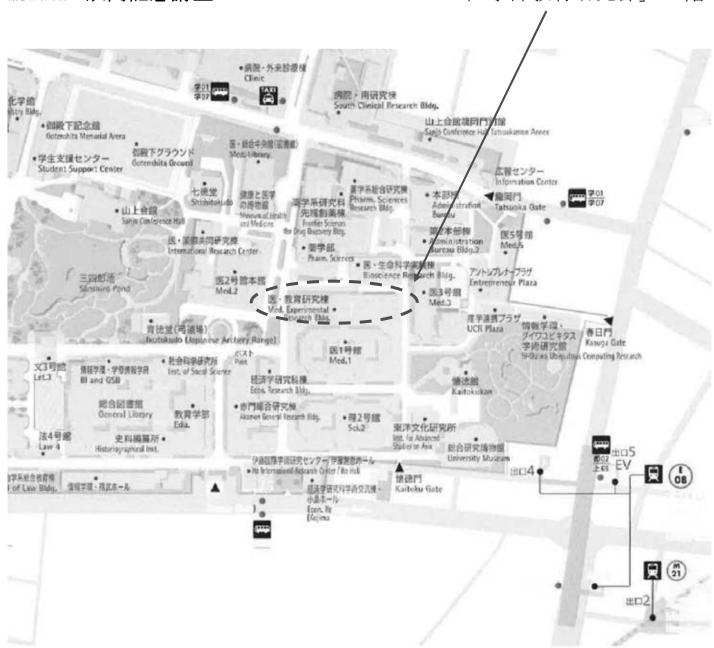
『赤 門』より徒歩1分

『懐徳門』より徒歩1分

『春日門』より徒歩1分

■タクシー利用目安

「東京駅」 にて乗車: 1200-1500円(約20分) 「浜松町駅」にて乗車: 2200-2600円(約30分) 「新宿駅」 にて乗車: 2300-2700円(約30分) 「品川駅」 にて乗車: 3200-3800円(約40分)


※タクシーをご利用の際は、「龍岡門」より入構してすぐ左手の「本郷キャンパス本部棟前」までお越し頂くと便利です。

○東京大学 本郷キャンパスまでのアクセス

○東京大学 本郷キャンパス内 案内図

講演会会場 "鉄門記念講堂"·················· 医学部教育研究棟」14 階

スケジュール(国際特別講演会) Schedule

●10月30日(日曜日)

8:45~9:30「受付」

9:30~9:35「開会式」 "開会の挨拶" 一般社団法人 東京形成歯科研究会 副会長 鈴木 正史

9:35~11:05「基調講演」

-## \-\- n-L B=	演題					
講演時間	講演者	国籍	所属	座長 ①	座長 ②	
	多血小板血漿(PRP)由来物質における骨再生の作用機序に関する最新の考え方					
9:35 ~ 10:05	川瀬 知之	日本	新潟大学大学院医歯 合研究科顎顔面再建 座歯科薬理学分野准 /日本歯科大学新潟 歯学部客員教授	渡辺 泰典(一般社学講 大 東京形成歯科研 教授 理事/あけぼの歯科	上団法 开究会郭 宗甫(台灣大學獸 科) 專業學院 教授)	
10:10 ~	ISBB(国際血液	・幹細胞臨床応用	会議)の使命と今後の再生 国際血液・幹細胞臨床	主医療への献身 応用・増木 英郎 (一般社	上団法 盧 貞祥 Chen-Hsiar	
10:40	蘇 正堯	台湾		際再人 東京形成歯科の 理事、理事/エルム駅前歯 院)	Lu. (Lu's dental	
10.45	顔面変形と再生	医療				
10:45 ~ 11:05	星 和人	日本	1	病院石川 烈(東京女子 アリ大學先端生命医科 教授究所特任顧問)	学院医歯学総合研究	

11:10~12:35「症例報告/研究発表」※各発表時間:10分

#>>n+188	演題						
講演時間	講演者	国籍	所属	座長 ①	座長 ②		
	4種の血小板濃線	縮液における増殖	因子レベルの比較研究 -	A-PRF, CGF, PRGF, F	PRP -		
11:10 ~					g社団法田草川 徹(明海大学		
11:20	礒邉 和重	日本	科研究会/いそべ歯	人 東京形成歯科	研究会学部病態診断治療学		
	MARIE TRAE		院	理事/早稲田駅	前デン座口腔顎顔面外科学		
				タルクリニック)	野 I)		
	PRGF を用いた臨	床症例の短期予復	发についての考察				
11:25				川端 秀男(一般			
~			一般社団法人 東京形	人 東京形成歯科	→ →研究会 学部病態診断治療学		
11:35	渡辺 泰典	日本	科研究会理事/あ		前デン座口腔顎顔面外科学		
			の歯科	タルクリニック)	野 I)		
	インプラント治	療における PRGF	endoret の有効性と臨床応	5用			
11:40				川端 秀男(一般	と 対社団法 田草川 徹(明海大学		
~	中村 雅之		 一般社団法人 東京形成歯	成歯人 東京形成歯科	 研究会 学部病態診断治療学		
11:50		日本	科研究会/中村歯科問	医院 理事/早稲田駅	前デン座口腔顎顔面外科学		
				タルクリニック)	野 I)		
11:55	重度の顎骨吸収症例「 PRP、PRF 応用における技術に影響を与える臨床比較」						
~				豊田 寿久(一般	· I—— I—		
12:05	陳 建志	台湾	陳建志牙醫診所	人 東京形成歯科	Shu, Sophia Pei-Wer 研究会 蘇 珮玟(台湾)		
				理事/報徳歯科)			
	骨組織再生のた	めの多血小板フィ	アブリンおよび骨髄由来間	葉系幹細胞で官能骨移	植代替物		
12:10			Postgraduate school				
\sim			College of Oral	。 豊田 寿久(一般	g社団法 Shu, Sophia Pei-Wer		
12:20	林 明正	台湾	Medicine, Taipei Med	人 東京形成歯科	∤研究会 蘇 珮玟(台湾)		
			University	理事/報徳歯科)			
12:25	クマによる下顎骨骨折の一症例 ~癒合不全に対する骨髄海綿骨移植の有用性~						
~			一般社団法人 東京形	成歯 豊田 寿久(一般	 设社団法		
12:35	北村 豊	日本	:	事/人 東京形成歯科	Shu, Sophia Pei-Wer 研究会		
			 	センター理事/報徳歯科)	蘇 珮玟(台湾)		

12:35~13:15「昼食/休憩」

13:15~15:20「基調講演」

講演時間	演題				
	講演者	国籍	所属	座長 ①	座長 ②
13:15	最小侵襲フェースリフト				
~ 13:45	Lim Jong Hak	韓国	KAAS 韓国美容外科医学会会長	梅澤 文彦(一般社団法人 日本美容外科学会 会頭)	柳 時悦(一般社団法人東京 形成研究会 監事、日本橋り ゅうデンタルクリニック)
	PRP、PRF の使用及び歯科インプラント再建中の幹細胞				
13:50 ~ ~ 15:20	JACK T KRAUSEF	米国	歯周外科医 President and Director of The Implant Center of the Palm Beaches	学系研究科外科学専攻 感覚・運動機能医学講座	蘇 嘉俊(James Su, Chia- Jun)(大衛牙醫診所 植牙院 長/國際顧問醫師)

15:20~15:30「休憩」

15:30~16:10「基調講演」

講演時間	演題				
	講演者	国籍	所属	座長 ①	座長 ②
15:30	閉経後骨粗鬆症にリリースされた幹細胞と多血小板フィブリンの再生能力:マウスにおける in vivo 研究				
~ 16:10	郭 宗甫	台湾	台灣大學獸醫專業學院 名譽教授	レーション学会/株式会社	北村 豊 (一般社団法人東京 形成研究会 相談役・理事/ 信州口腔外科インプラントセンター)

16:15~16:55「パネルディスカッション」

時間	テーマ					
₩Ū [Ħ]	パネリスト	座長 ①	座長 ②			
	自己血由来の成長因子を用いた再生療法の今後の展望					
16:15 ~ 16:55		月岡 庸之(一般社団法	相澤 八大(一般社団法人			
	Jack T Krauser、Lim Jong Hak、川瀬 知之、髙戸 毅、石川 烈、	人 東京形成歯科研究会	東京形成歯科研究会 理事			
	蘇 正堯、郭 宗甫	副会長/つきおか歯科	/あいざわ歯科クリニッ			
		医院)	ク)			

16:55~17:00「閉会式」 "閉会の挨拶" 一般社団法人東京形成歯科研究会 会長 古谷田 泰夫

17:30~19:30「鈴木正史 TPDS 副会長主催 懇親会 Vice President Masashi Suzuki Sponsored Dinner」

「昼食会場」

世·内科研究推

学生支援センター Audent Support Center

EXPENSE.

074

网院·莱研究维

食事代は参加登録費に含まれておりません。

病院·入院練B

研究・選择試験機 Clirical Research

> ·病院·外京診療技 Cleic

医・研究中央数征管理

○東京大学 本郷キャンパス内

引戦下グラウンド Date かん

•山上帝部

●「レストラン ねむの樹」

(病院・入院棟 A1 階/TEL:03-3811-7557)

営業時間: (日曜・祝日) 8:00-21:00

●「ブルークレール精養軒」

(病院・入院 棟 A15 階/TEL:03-5842-8261) 営業時間: (日曜・祝日) 11:00-20:00

■ 医学部研究科教育研究棟鉄門記念講堂(講演会場)

「鈴木正史 TPDS 副会長主催 懇親会 Vice President Masashi Suzuki Sponsored Dinner」

用的,南研究特

東字书被合证文章 Pharm. Sciences

先採創業権

• 简学纸

医·数育研究機 Vod. feeting機 山上会館項同門別館

第2本部標

• 因3号级 Met3 広報センター

ボギュボブラザ 情報学園・ UCR Plaza ダイクコビキタス を日門

▼無田門

日時:2016年10月30日(日)17:30~19:30

B. 重要本内研究推

eal Research Center

医2号焓本兹

会場:ルネッサンスタワー上野池之端 38F 「スカイビューラウンジ」 住所√ 台東区池之端 2-1-35

10月30日(日) 9:35~10:05

演題: 多血小板血漿(PRP)由来物質における骨再生の作用機序に関する最新の考え方

PRP therapy: current basic concept in periodontal skeletal regeneration

講演者:川瀬 知之

抄録:

PRP は、1990 年代に Marx がはじめて上顎洞底拳上術における有効性を報告して以来、様々な形で発展し臨床的に普及してきた。その作用機序は、血小板由来の増殖因子の供給源として治療部位周辺の細胞を活性化することにあると理解されている。しかし、残念なことに、その理解が妥当なものかどうかという検証も不十分なまま、臨床的に有効か無効かという議論のほうに関心が移っている。

しかし、たとえば、全血を定法に従って遠心した場合、血小板はどの分画にもっとも多く含まれるかということを考えたことがあるだろうか?また、多血小板フィブリン(PRF)にはどのくらいの血小板や白血球が含まれるか聞いたことがあるだろうか?実は、遠心条件によって、このような実体を表す数字は大きく変わりうるものであり、当然の帰結として、骨再生に及ぼす影響は変わってくるものと考えられる。特に、PRP 中に含まれる白血球の役割や適正数については、Choukrounと Anitua の論争のように意見が分かれるところであり、骨再生に大きく影響を及ぼしているということが徐々に明らかになってきている。

本講演では、PRP 調製というもっとも根幹をなす技術的側面を再考することからアウトプットである治療効果が多様化する可能性を考えてみたい。

Platelet concentrates (PRP and its derivatives) have been utilized in regenerative therapy based on the following principle: They mainly provide live platelets, growth factors, and fibrinogen. Because these components are normally present at the site of application, this therapeutic methodology can be identified as a "replacement therapy." Therefore, as far as cellular or enzymatic constituents responsive to or collaborating with these components remain at the site of application, platelet concentrates are expected to work effectively.

However, this principle has rarely been reconsidered. In this talk, I would like to demonstrate points to reevaluate platelet concentrates through deliberation on what they can and cannot accomplish. Here the most important point to consider is the accurate evaluation of conditions of recipient sites rather than potential differences between individual blood samples.

Further, I would like to refer to possible influences of preparation protocols on the potency and clinical effectiveness of platelet concentrates.

プロフィール:

略歴

1985	新潟大学歯学部卒業
1986-1993	新潟大学歯学部助手
1990	博士(歯学)授与 (新潟大学)
1991-1993	Postdoctoral fellow (University of Miami, FL, USA)
1993-1993	新潟大学歯学部講師
1994-date	新潟大学歯学部助教授(2002年より准教授)
1997-1998	Visiting Associate Professor
	(University of Kansas, KS, USA)
2012 to date	日本歯科大学新潟生命歯学部客員教授

所属

新潟大学大学院医歯学総合研究科 顎顔面再建学講座 歯科薬理学分野 准教授 日本歯科大学新潟生命歯学部 客員教授

11月1日(日) 10:10~10:40

演題:ISBB の使命と今後の再生医療への献身

ISBB mission and its devotion to the future regenerative medicine

講演者:蘇 正堯

抄録:

世界トップレベルの科学的社会と研究と若手の学者や臨床医のための臨床研修の国際的に認められた組織になるための先進的な環境として、血液バイオマテリアルの国際学会(ISBB)は、血液の世界における最新の知識や技術の普及に描きます。血液由来増殖因子およびサイトカインと希望を持つ臨床的に関連する生体材料は、細胞治療や診療所での治療用途を最適化します。現在使用されて、血液由来の生体材料の最良の例の一つは、多血小板血漿(PRP)です。 1990 年以来、PRP は、ケアの標準となっていると、歯科分野にだけでなく、整形外科、皮膚科、プラスチックおよび美的手術中など、様々な分野でだけでなく、深遠な有益な影響を与えました。しかし、その起源は、歯科にあった、その他の領域では、そのような深遠な有益な影響を与えました。多くの歯科医や、この大会に参加しているような専用の研究者のおかげで、PRP は発展しています。それは現在の状態で一時停止してはならない最後の数年で大きな一歩を移動しました。広範な研究は、治癒および組織再生を創傷に血液由来材料の有益な影響を発見するために来て、将来的に行われるべきです。それは、将来の再生医療に何ができますか?この目的のために、これまでの成果の詳細なデモンストレーションにより、それが社会の発展について話をする私の特権だし、この学会の誕生ように進歩をしております。

今日のプレゼンテーションでは、ISBB メンバーを代表して、将来の再生医療への献身を目的とした少しずつ段階的に、働いていた方法研究と 臨床所見を呈示してみたいと思います。

On its ambitious path to becoming a world top-level scientific society and internationally recognized seat of research and clinical training for young scholars and clinicians, the International Society of Blood Biomaterials (ISBB) draws on spreading the latest knowledge and technologies in the world of blood-derived growth factors and cytokines and clinically-relevant biomaterials with a hope to optimize their therapeutic applications in cell therapy and clinics. One of the best examples of blood-derived biomaterials currently used is Platelet-Rich Plasma (PRP). Since the 1990, PRP has become a standard of care and has had a profound beneficial impact not only on dental field but also in various areas such as in the orthopedic, dermatology, plastic and aesthetic surgeries. However, its origins were in dentistry and in no other area has it had such a profound beneficial impact. Thanks to many dental surgeons and dedicated researchers such as yourselves, PRP has moved a major step in last several years, however, it should not pause in current state; an extensive research should be done in the coming future to discover the beneficial impact of blood-derived materials to wound healing and tissue regeneration. What can it do to future regenerative medicine? For this purpose so that the birth of this Society.

In today's presentation, on behalf of the ISBB members, it's my privilege to talk about the development of the Society and how it worked step by step, little by little, aimed to devotion to future regenerative medicine by a detailed demonstration of the achievements to date of researches and clinical findings.

プロフィール:

国立陽明大学 教授

略歴

所属

国際血液·幹細胞臨床応用会儀(ISBB) 会長 国際再生予防学会(WCPRM) 理事

10月30日(日) 10:45~11:05

演題:顔面変形と再生医療

講演者:星 和人

抄録:

各国の研究グループが、顔面変形の治療の使用するため、足場素材を用いたティッシュエンジニアリング型再生軟骨組織の開発を行ってきた。しかし、免疫不全マウスを用いた動物実験は成功するものの、免疫が正常な大動物では異物組織反応などといった問題が生じ、実現には至っていなかった。われわれはポリ乳酸とコラーゲンの複合足場素材の導入などにより、力学強度と3次元な形態を具備する「インプラント」型再生軟骨を実現した。口唇口蓋裂の鼻変形に対しインプラント型再生軟骨を使用する臨床研究を実施し、安全性を確認した。さらに、多施設間での組織や細胞のやりとりを可能にし、培養工程を製造機関に集約するための再生組織輸送法と長期保存法を開発して、実用型の3次元再生軟骨を確立した。この再生軟骨については、現在治験を行っている。

本発表では、3 次元再生軟骨組織の研究開発過程と臨床応用の実際を紹介するとともに、このティッシュエンジニアリング型再生軟骨組織を他の再生組織と複合化させて作製する再生気管軟骨への展開、あるいは無限増殖能や多分化能を有するためサイズが大きい耳介軟骨欠損への適応が可能となる iPS 細胞の導入、3 次元バイオプリンターを用いた 3 次元造形技術の応用、などといった顔面変形に対する 3 次元再生組織応用の今後の展望を述べる。

プロフィール:

略歴

平成 3年3月 東京大学医学部医学科 卒業

平成 10 年 3 月 東京大学大学院医学系研究科 修了

平成 13 年 4 月 東京大学医学部附属病院整形外科 医員

平成 14 年 1 月 東京大学医学部附属病院整形外科 助手

平成 14 年 11 月 東京大学大学院医学系研究科

メニコン軟骨・骨再生医療寄付講座 客員助教授

平成 20 年 11 月 東京大学大学院医学系研究科

軟骨・骨再生医療寄付講座(富士ソフト) 特任助教授

平成 22 年 12 月 東京大学医学部附属病院

ティッシュ・エンジニアリング部 副部長(併任)

平成 26 年 9 月 東京大学大学院医学系研究科

外科学専攻 感覚·運動機能医学講座 口腔外科学分野 准教授

所属

日本再生医療学会(平成24年より理事), 日本整形外科学会,

日本口腔外科学会,日本口腔科学会,日本形成外科学会, 国際再生医学会,国際軟骨修復学会, など

10月30日(日) 11:10~11:20

演題:4 種の血小板濃縮液における増殖因子レベルの比較研究 - A-PRF, CGF, PRGF, PRP -

発表者: 礒邉 和重

抄録:

1990 年代半ば Marx により上顎洞底挙上術における PRP の有効性が報告されて以来, 今日に至るまで様々な形態・コンセプトの血小板濃縮材料が開発されてきた.

そのなかでも Advanced-platelet-rich fibrin (A-PRF)と Concentrated growth factors (CGF) は、抗凝固剤や凝固因子の添加を必要とせず、簡便に調製できることから近年急速に普及している。 臨床研究では PRF が PRP と同様の再生効果を認めるという報告も多いものの, Dohan Ehrenfest らの初期の研究など、増殖因子の濃縮効果は認めらないという報告も少なくない. そこで,われわれは A-PRF と CGF に含まれる増殖 因子(TGF- β 1, VEGF, PDGF-BB)と炎症性サイトカイン($L-1\beta$, L-6)の量を ELISA により測定し,positive control として PRGF (Plasma-rich in growth factors)や PRP と比較した.

図 1 に示すように、各増殖因子は、ともに CGF において最も高いレベルで含まれていた。 PRP と A-PRF では、ほぼ同程度であり、白血球を含まない PRGF は最もレベルを示した。 一方、 \mathbb{L} – β 1 は PRGF においてほとんど検出されなかったが、 \mathbb{L} – δ に関しては各血小板濃縮液間で有意差は認められなかった。

以上の所見より、A-PRF や CGF といった自己ゲル化型血小板濃縮材料においても、PRP と同等あるいはそれ以上の増殖因子が濃縮されていることが示唆された。したがって、A-PRF や CGF は、PRP と同様に、治療部位に増殖因子を提供することにより組織再生を促しているものと考えられ、A-PRF や CGF の臨床的有効性を支持するものである。

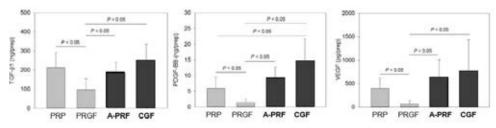


図1:血小板濃縮材料における増殖因子(TGF-81, PDGF-88, VEGF) の総量

プロフィール:

略歴

1995年 日本歯科大学新潟歯学部卒業

1995年 医療法人慈皓会 波多野歯科医院 勤務

2006年 東北大学大学院歯学研究科修了 歯学博士

2011年 日本口腔インプラント学会専門医取得

2014年 医療法人和貴会 いそべ歯科医院 理事長

所属

日本口腔インプラント学会専門医

国際血液·幹細胞臨床応用会議 The International Society of Blood

Biomaterials (ISBB)認定医

医療法人和貴会 いそべ歯科医院

一般社団法人東京形成歯科研究会

10月30日(日) 11:25~11:35

演題:PRGF を用いた臨床症例の短期予後についての考察

発表者:渡辺 泰典

抄録:

抜歯即時インプラント埋入症例で PRGF を用いた臨床症例を去年演者は同シンポジウムで発表してきた。それらの症例を整理して抜歯前とインプラント植立後3~5年の CT 像を比較して、その予後安定性について考察していきたい。

頬側の裂開症例に対し自家骨の移植と同時に PRGF を用いたインプラント同時埋入は、外科処置回数の軽減と早期修復が可能で、患者、術者にとっても有益であると考える。しかし、その予後安定性については明らかになっていない。この度、抜歯前の CT 像により頬側裂開症例の頬側裂開幅を測定し、二次オペ時にその裂開が封鎖されていることを確認し、更に補綴後3~5年後の CT 像を比較し予後安定性を検討する。いずれの症例も頬側骨は維持されており臨床上問題ないと考えるが、今後さらなる経過を評価することが必要と考える。

プロフィール:

略歴

1998年 新潟大学歯学部卒業

1998-2002年 横浜市 医療法人審美会 鶴見歯科医院勤務

2002-date 長岡市 あけぼの歯科 院長

2011-2015 年 新潟大学医歯学総合大学院 硬組織形態学講座 社会人大学院生

2015-date 新潟大学医歯学総合大学院 硬組織形態学講座 研究生

2015年 博士(歯学)取得(新潟大学)

2015年 日本口腔インプラント学会 専門医 取得

所属

あけぼの歯科 / 一般社団法人東京形成歯科研究会

10月30日(日) 11:40~11:50

演題:インプラント治療における PRGF endoret の有効性と臨床応用

発表者:中村 雅之

抄録:

インプラント治療において PRGF (Plasma-Rich in Growth Factors) endoret を併用することによって、軟組織の治癒と骨形成速度を促進させインプラント治療に有効であると実感しています。今回いくつかの症例を提示させていただきたいとおもいます。

プロフィール:

略歴

所属

中村歯科医院院長

PRGF System Institute Japan 理事、指導医

ジンマーデンタル公認インストラクター

FIDI メンバー

日本口腔インプラント学会 認証医

一般社団法人東京形成歯科研究会 所属

日本大学松戸歯学部口腔顎顔面インプラント学 非常勤

10月30日(日) 11:55~12:05

演題:重度の顎骨吸収症例「PRP、PRF 応用における技術に影響を与える臨床比較」

A comparison of clinical impact between cases of severe resorbed ridges with or without the aid of PRP, PRF techniques

発表者:陳 建志 Ken-Zi Chen, D.D.S.

抄録:

2000 年以来、PRP 法は、台湾で私たちの毎日の練習で医療や歯科の分野に導入されました。今ではこれまで以上に練習も PRF と CGF のテクニック!基本的には、これらの貴重な血液生体材料は、血小板の環境から解放されました。これらの技術は、さまざまな方法で変更されたどんなに、成長因子は、人間の体の生物学的修復・再生のプロセスを開始するほとんどしキーだった 今日、薄い歯茎 PRP ・ PRF 技術の援助の有無の例の臨床効果の違いを表示することにしますさらに、これらの貴重な成長因子の助けを借りて、手術モデルの変更と臨床転帰の改善を実証するでしょう。

Since 2000, PRP technique was introduced to the medical and dental fields in our daily practices in Taiwan. PRF and CGF techniques were also practiced more than ever by now! Basically, these valuable blood biomaterials were released from the milieu of platelets. No matter these techniques were modified in different ways, growth factor was the key that we want most to initiate the process of biological repair & regeneration in our human body.

Today, I want to show you the difference of clinical effects between cases of thin alveolar ridge with or without the aid of PRP & PRF techniques. Furthermore, with the help of these valuable growth factors, the change of the surgical model and improvement of the clinical outcomes will be demonstrated.

プロフィール:

略歴

所属

Master Program of Dental Science, Department of Dentistry, National Yang-Ming University, Taipei, Taiwan Ken-Zi Chen Dental Clinic, Taipei, Taiwan Implantdoc255@yahoo.com.tw

10月30日(日) 12:10~12:20

演題: 骨組織再生の向上のための多血小板フィブリンおよび骨髄由来間葉系幹細胞で官能骨移植代替物

Functionalized bone-graft substitutes with platelet-rich fibrin and bone marrow-derived mesenchymal stem cells for enhanced bone tissue regeneration

発表者:林明正

抄録:

優れた生物活性、生体適合性および骨伝導性を有している多孔性骨移植材料は、骨組織再生に重要な役割を果たしてきました。この研究は、多血小板フィブリン(PRF)を用いて、骨髄由来間葉系幹細胞(骨髄幹細胞)および/またはゼラチンの骨移植エクステンダー(BG)の組み合わせか否かを調べ、 β -リン酸三カルシウム/ヒドロキシアパタイト(40/60)複合-chondroitin-ヒアルロン酸トリ共重合体の足場は、骨再生を向上させることができ、そしてこれらの治療は、(I)BG + PRF、(II)BG + PRF + 骨髄幹細胞、(III)BG + 足場、(IV)BG + 足場+骨髄幹細胞を含む 4 処理群の間で高速に新しい骨の形成後の骨損傷をもたらすかどうか調べました。

MSC は、収穫したウサギの骨髄から単離しました。全層骨欠損(直径 5.0 ミリメートル)はウサギの下顎の角度で作成されました。次のように各グループの骨欠損の治療はあった:グループ I(n = 4)は、BG 1.7 グラムと PRF の 0.75 立方センチメートル。 I 群(n = 4)は、BG 1.7 グラムおび PRF /2x10⁶ 骨髄幹細胞の混合物の 0.75 立方センチメートル。グループ II(n = 4)は、BG 1.7 g であり、足場の約 0.78 cm³で。グループ IV(n = 4)は、BG 1.7 グラムと足場/2x10⁶ 骨髄幹細胞の混合物の 0.78 立方センチメートル。下顎骨は 3 ヶ月で全ての検体から採取した、およびグラフトされたサイトは、総組織学的、および X 線検査によって評価しました。

組織学的検査は、繊維接続に最小限の骨形成が | と || 族群で観察された欠陥は、グループ || および | V に一般的な骨組織によって修復されたことを明らかにしました。最良の結果は、BG+PRF+BMSCs transplantation であり、第二は BG +足場+骨髄幹細胞、第三は BG +足場、最後のグループは BG + PRF である。実験群と対照群の間に統計学的有意差が認められました。明らかに、PRF プラス骨髄幹細胞は、骨再生のための良好な可能性を秘めていると技術が下顎のクリティカルなサイズの骨病変の治療のための骨移植手順に新しい選択肢を説明します。

Porous bone grafting materials, which possess excellent bioactivity, biocompatibility and osteoconductivity, have played an important role in bone tissue regeneration. This study examined whether a combination of bone graft extender (BG), beta-tricalcium phosphate/hydroxyapatite (40/60) composite, with platelet-rich fibrin (PRF), bone marrow-derived mesenchymal stem cells (BMSCs) and/or gelatin-chondroitin-hyaluronan tri-copolymer scaffold could improve bone regeneration; and whether these treatments yield faster new bone formation following bone injury among the four treated groups that include (I) BG+PRF, (II) BG+PRF+BMSCs, (III) BG+scaffold, (IV) BG+scaffold+BMSCs.

MSCs were harvested and isolated from the bone marrow of rabbits. Full-thickness bony defects (diameter 5.0 mm) were created in the bilateral mandible angles of the rabbit. Treatments for bone defect in each group were as follows: group I (n=4), BG 1.7 g and 0.75 cm³ of PRF; group II (n=4), BG 1.7 g and 0.75 cm³ of PRF/2x10⁶ BMSCs admixtures; group III (n=4), BG 1.7 g and approximately 0.78 cm³ of scaffold; and group IV (n=4), BG 1.7 g and 0.78 cm³ of scaffold/2x10⁶ BMSCs admixtures. The mandibles were harvested from all specimens at 3 months, and the grafted sites were evaluated by gross, histologic, and X-ray examination.

Histologic examination revealed that the defect was repaired by typical bone tissue in groups II and IV, whereas only minimal bone formation with fibrous connection was observed in the groups II and III group. The best results were obtained with BG+PRF+BMSCs transplantation that had better bone union, formation and new bone position than BG+scaffold+BMSCs in the second, BG+Scaffold in the third, and BG+PRF in the last group. A statistically significant difference between the experimental and control groups was observed. Evidently, PRF plus BMSCs have good potential for bone regeneration and the technique describes a new alternative to bone grafting procedures for the treatment of critical sized bony lesions of the mandible.

プロフィール:

略歴

所属

ジェン林歯科医院、新荘、新北市、台湾

10月30日(日) 12:25~12:35

演題:クマによる下顎骨骨折の一症例 ~癒合不全に対する骨髄海綿骨移植の有用性~

A case of mandibular fracture caused by bear-Utility of the particulated cancellous bone and marrow graft for the malunion-

発表者:北村 豊 Yutaka KITAMURA

抄録:

[緒言]最近の日本各地での野生動物の目撃回数も増加しつつあり、それにともなって危険動物の攻撃による受傷例も増加しつつある。今回、ツキノワグマによる受傷例に対し、骨髄海綿骨(PCBM)移植を応用し良好な治癒が得られた下顎骨骨折癒合不全症例の一例を経験したので、その概要を報告する。

Introduction: The number of witnesses of the wild animal in recent various parts of Japan is increasing, and the injury cases by the attack of the critical animal are increasing with it, too. Because we experienced a case of the mandibular fracture malunion that we apply the particulated cancellous bone and marrow (PCBM) transplant, and good healing was obtained for this injury case caused by the wild adult moon bear this time, I report the summary.

[症例]患者は 42 歳男性で、"右顎の歯が咬みあわない"との主訴で近医の紹介により、2009 年 2 月 12 日に初診で当院へ来院した。患者は 2008 年 6 月 20 日に長野県志賀高原でツキノワグマ成獣による左頬部軟組織と下顎骨に外傷を受け、近くの総合病院形成外科を受診した。 同院で全麻下に頬部裂創の縫合処置と左下顎骨骨折のプレート固定術による整復固定術を受けたが、術後も咬合不全が継続した。

Case: The patients were 42 years old men and came to my clinic by the introduction of the nearby doctor in chief complaint, "did not chew the teeth of the right jaw" to my clinic on February 12, 2009. The patient suffered trauma of soft tissue in the left buccal region and the mandibular bone due to the adult beast of Moon bear (Asiatic black bear) at Shiga highland, Nagano on June 20, 2008 and rushed to the general hospital (GH). He underwent the suturation treatment of lacerated wound and repositioning by the plate fixation of the lower left mandibular fracture site under general anesthesia in the GH, but postoperative occlusal deficiency continued.

[経過]初診時所見では、右側小・大臼歯部で咬合接触が無く、X線所見では左下顎骨骨体部より下顎枝にかけてミニプレート 3 本、骨ネジ 11 本による固定が実施されてはいたが骨片の整復が十分でなく、癒合不全を示唆する所見であった。CT画像では、骨片の整復は不十分で、3D 画像では、骨片間に空隙が広く認められ、経過観察のみでは治癒せず、咬合不全も回復しないと判断された。そのため、2009 年 4 月 8 日に全麻下に脛骨PCBM移植をともなう整復固定術を実施した。大小骨片断端間には線維性組織が多量に存在し、偽関節を形成しており、それらの軟組織を除去した後、骨吸収や消失した骨片間にPCBM移植と、ミニプレート固定を行った。術後経過は良好で、右側の開咬も無くなり、術前にはほとんど知覚の消失していた患側オトガイ神経領域も、SW知覚テストで 0.07gにまで反応するようになった。

Course: For the initial findings, there was no occlusal contact in the right, molar region and radiological finding of mandibular ramus from three mini-plates, fixation with 11 bone screws were performed, but repositioning of the bone fragments were insufficient. These findings suggested dysraphism of fractured mandible. With the CT image, the reposition of the bone fragments done by former plastic surgeons were insufficient, and a space was revealed in the 3D image between bone fragments widely, and was judged only from follow-up without healing when the occlusion deficiency did not recover. Therefore we performed the recovery operation of repositioning and fixation of bone fragments with using the tibia PCBM transplant under general anesthesia on April 8, 2009. After fibrous tissue being present between the stumps of big and small bone fragments abundantly, and forming pseudarthrosis, and having removed those soft tissues, we fixed PCBM and mini-plates between resorbed place of bone and bone fragments which disappeared. The postoperative course was progressing favorably, and the right-sided open bite was gone. Moreover, the almost sensorial diseased field of mental nerve that almost disappeared, came to respond to 0.07g on perception test (sensory evaluator Semmes-Weinstein: SW test) postoperatively.

[結語]PCBMは、感染に強く、骨形成能が高いことが従来より知られている。今回、ドナーサイトは低浸襲を考慮して腸骨ではなく、脛骨を選択したが、良好な結果が得られた。症例を選べば、PCBMは口腔外科領域では今なお有用な再生医療の選択肢と言えるであろう。

Concluding remarks: PCBM resists infection, and it is known that bone organization potency is high conventionally. The donor site chose tibia not ilium in consideration of low infestation this time, but good results were obtained sufficiently. It may be said that PCBM is still a choice of the useful and simple regenerative therapy in the field of oral and maxillofacial surgery, if we choose the case properly.

プロフィール:

学歴

昭和50年3月 神奈川歯科大学歯学部歯学科卒業

昭和61年12月 歯学博士号取得(神奈川歯科大学)

平成 4年4月 近畿大学医学部形成外科教室へ短期留学

免許

日本口腔外科学会認定専門医

日本口腔外科学会認定指導医

日本口腔インプラント学会専門医

日本顎顔面インプラント学会指導医

学位 昭和61年12月 歯学博士 学位受領

職歴

昭和50年4月 松本歯科大学助手(口腔外科学第1講座)

元松本歯科大学助教授(口腔外科学第1講座)

元医療法人新生病院口腔外科医長(長野県上高井郡小布施町)

現在 信州口腔外科インプラントセンター所長

神奈川歯科大学人体構造応用研究所特任講師

松本歯科大学臨床教授(口腔顎顔面外科学講座)

フィルピン ナショナルユニバーシティ(マニラ) 客員教授

一般社団法人東京形成歯科研究会 相談役:理事

10月30日(日) 13:15~13:45

演題: 最小侵襲フェースリフト Minimal invasive invasive face lift Lin Zhong,

講演者:Lim Jong Hak

抄録:

最近の若返り手術は、切開をしない又は最小切開で老化により垂れている深部組織を拳上させ、更に中からの組織再生を促進させる方向に 進んでいます。

拳上時に用いる材質は、Scaffold(足場)として使用する poly-lactic Acid(HAi lift),P.O.D threads with or without coggs(Dual lift & V-line lift) を用います。

これらに自家脂肪又はP.R.Pを混合注入することによって、拳上効果と顔面輪郭形成効果、皮膚組織再生が増強され、良い結果を得ていますので訂正を加え報告します。

The recent rejuvenation surgery is deep tissue with no incision or minimal incision is sagging due to aging, fist is going to let up, to promote regeneration of tissue from further. Material time on fist is used as a Scaffold (scaffolding) poly-lactic Acid (HAi lift), P.O.D threads with or without coggshi (Dual lift & V-line lift) is used. Together with a correction, fist on effects and facial contour formation and regeneration of skin tissue enhanced by injection of autologous fat or P.R.P in these mixtures, has gotten good results and reports.

プロフィール:

略歴

所属

韓国美容外科医学会(KAAS) 会長(President of KAAS)

10月30日(日) 13:50~15:20

演題:PRP、PRFの使用及び歯科インプラント再建中の幹細胞

The use of PRP, PRF and Stem Cells in Dental Implant Reconstructions

講演者: JACK T KRAUSER

抄録:

このプレゼンテーションでは、これらの製品に私の個人的な履歴を確認します。最初は、10 年前に、PRP プロトコルを使用しました。いくつかの症例報告は、科学的背景と同様に表示されます。最後の 5 年間で、PRF の概念が採用されてきました。ここで、科学的背景とケースレポートが表示されます。最後に、凍結保存された幹細胞と呼ばれる製品の新しいグループが表示されます。ここでは、科学、細胞調達及び処理の見直しだけでなく、少数の症例報告が実証を報告いたします。

This presentation will review my personal history with these products. Initially, ten years ago, PRP protocol was used. Several case reports will be shown as well as background science. Over the last 5 years, PRF concepts have been employed. Here, background science and case reports will be shown. Finally, a new group of products called cryopreserved Stem Cells will be shown. Here, a review of the science, cell procurement and processing as well as a few case reports will be demonstrated.

CV: Jack T Krauser graduated from U Pennsylvania School of Dentistry and Boston University Grad Perio. He is a fellow and diplomate of several organizations including: AAP, AO, ICOI, AAID. He is on the editorial board of several journals and has contributed to more than 4 chapters in textbooks. He has over 20 peer reviewed papers in the scientific literature. Together with Babbush and Hahn he has written a textbook entitled "Dental Implants: The Art and Science".

プロフィール:

略歴

所属

歯周外科医 President and Director of The Implant Center of the Palm Beaches (米国・フロリダ州)

10月30日(日) 15:30~16:10

演題:閉経後骨粗鬆症にリリースされた幹細胞と多血小板フィブリンの再生能力:マウスにおける in vivo 研究

The regenerative potential of stem cells and platelet-rich fibrin releasates in postmenopausal osteoporosis: An in vivo study in mice 講演者:郭 宗甫

抄録:

閉経後骨粗しょう症は、卵巣機能の停止後の血清エストロゲンレベルの急性減少によって主に引き起こされる状態です。および減損骨格強度および骨折に対する感受性の増加につながる骨組織の量と質の異常によって特徴づけられます。骨粗鬆症における細胞に基づく治療の治療効果を評価するには骨髄幹細胞(BMSCを)および多血小板フィブリン放出物(PRFr)を使用しました。骨粗しょう症は、卵巣摘出(OVX)によりマウスモデルで設立されました。骨再生のための治療の可能性を調査するための OVX マウスに骨髄幹細胞、PRFr、および骨髄幹細胞+ PRFr の移植とは骨量の損失を回復しました。非外科的、SHAM、および OVX:OVX または偽の操作がランダムに 3 つの部分に分かれた古い 16 週間、で処女 ICR マウスで実施しました。非手術群で 6 匹のマウスは何の手術ではなかった、SHAM 群では 6 匹のマウスは、手術を偽に供し、そして OVX 群のマウスでは 30 匹のマウスは、4 つの異なる治療法(1)対照群を受け入れる、骨髄幹細胞を注射し 3x10⁵細胞/ 0.6 ミリリットル PBS; (2) PRFr 基は、PRFr の 0.6 ミリリットルを注入しました。 (3)骨髄幹細胞+ PRFr グループを、3x10⁵細胞は 4 週間にわたって週に一度 0.6 ミリリットル PRFr を組み合わせた骨髄幹細胞を注入しました。移植後 4 および 8 週で、骨量およびその売上高は、マイクロ CT で分析し、X 線、その後、組織形態計測によって分析し、その有効性を生け贄に捧げます。実験群と対照群の間に統計学的有意差が認められました。骨髄幹細胞+PRFr 移植は、骨密度の回復に有効であることが示されました。これらの知見は、BMSC と PRF 放出物の混合物は、潜在的に骨粗しょう症の治療に有効な薬剤であり得ることを示しました。

Postmenopausal osteoporosis is a condition caused principally by an acute decrease in serum estrogen levels after cessation of ovarian function; and characterized by abnormalities in the quantity and quality of bone tissue, which leads to impaired skeletal strength and increased susceptibility to fractures. To evaluate therapeutic efficacy of cell-based therapy in osteoporosis: a bone marrow stem cells (BMSCs) and platelet-rich fibrin releasate (PRFr) were used. An osteoporosis was established with a mouse model by ovariectomy (OVX). Transplantation of BMSCs, PRFr,and BMSCs + PRFr into OVX mice for investigating the therapeutic potential for bone regeneration and recovered bone mass loss. OVX or sham operations were performed on virgin ICR mice at 16-weeks old, which were randomly divided into three parts: Non-surgical, SHAM, and OVX. 6 mice in Non-surgical group was no surgery, 6 mice in SHAM group was subjected to sham surgery, and 30 mice in OVX group mice will accept four different treatments (1)Control group, injected BMSCs 3x10⁵ cells/0.6ml PBS; (2)PRFr group, injected PRFr 0.6ml; (3)BMSCs + PRFr group, injected BMSCs 3x10⁵ cells combine 0.6 ml PRFr once a week for four weeks. At 4 and 8 weeks after implantation, bone mass and its turnover were analyzed by micro CT, and X-ray, then sacrifice to analyzed their efficacy by histomorphometry. A statistically significant difference between the experimental and control groups was observed. BMSCs + PRFr transplants were shown effective in restoring bone mineral density. These findings indicated that the mixture of BMSC and PRF releasate could potentially be an effective agent in the treatment for osteoporosis.

プロフィール:

略歴

所属

台灣大學獸醫專業學院 名譽教授 亞洲大學學士後獸醫學系 客座教授

企業展示コーナーへお立ち寄りください。

○東京大学 本郷キャンパス 鉄門記念講堂 東京大学医学部教育研究棟 14 階 講堂(講演会場) 企業展示コーナー エレベーターホール 受付 [小間位置図面] ホワイエ 参加者出入口 4 (5) ①有限会社クリーンコーポレーション ①株式会社 OSSTEM JAPAN ⑥株式会社ジオメディ ②有限会社オーラス ⑦株式会社セキムラ ⑫株式会社デンタリード ③株式会社ニッシン ⑧オクデラメディカル 13株式会社ブレーンベース ④富士フイルム株式会社 ⑨王子デンタルラボラトリー (奥寺医療ビル有限会社) ⑤三井住友トラストクラブ株式会社 ⑩株式会社クレディセゾン

出展企業 問合せ先 Reference of the exhibition company

企業名 company name 有限会社オーラス www.olas.co.jp

担当者 the person in charge 三浦 孝之

住所 address 〒349-0217 埼玉県白岡市小久喜 874-1 新和ビル 201

TEL 0480-93-1218 / FAX 0480-44-8866 / E-mail olas@olas.co.jp

取扱い製品 (サービス) handling product (service) ファインな外科器械。アトラウティックな日本独自かつサービス品を準備。

企業名 company name 株式会社ニッシン www.nissin-dental.jp

担当者 the person in charge 営業グループ 学校営業 野浪 直美

住所 address 〒604-0847 京都市中京区烏丸通二条下る秋野々町 513 京都第一生命泉屋ビル 8 階

TEL 075-257-7255 / FAX 075-257-7256 / E-mail n-nonami@nissin-dental.co.jp

取扱い製品(サービス) 歯科模型

企業名 company name 株式会社セキムラ www. sedent. co. jp

担当者 the person in charge 東京営業部 柴田 清和

住所 address 〒174-0056 東京都板橋区志村 1-28-1

TEL 03-3966-7736 / FAX 03-3966-4461 / E-mail shibata@sedent.co.jp

取扱い製品 (サービス) handling product (service) サイコリッチ、モニタ、AED

企業名 company name 富士フイルム株式会社 fujifilm.jp

担当者 the person in charge 再生医療事業部 伊藤 匡彦

住所 address 〒107-0052 東京都港区赤坂 9-7-3

TEL 03-6271-2738 / FAX 03-6271-3191 / E-mail masahiko.ito@fujifilm.com

取扱い製品(サービス) handling product (service) ヒト型コラーゲン様リコンビナントペプチド「cell nest」及び加工物

企業名 company name 三井住友トラストクラブ株式会社

担当者 the person in charge 提携営業部 坂口 和彦

住所 address 〒104-6035 東京都中央区晴海 1-8-10 トリトンスクエア X 棟 35 階

TEL 070-2612-5485 / FAX - - / E-mail kazuhiko.sakaguchi@sumitclub.jp

取扱い製品 (サービス) handling product (service) ダイナースクラブカードのご案内

企業名 company name 株式会社ジオメディ www.geomedi.co.jp

担当者 the person in charge 取締役/部長 盧 永剛

住所 address 〒812-0016 福岡県福岡市博多区博多駅南一丁目 7 番 22 号 ブックローンビル 6F・7F

TEL 092-409-4050 / FAX 092-409-4051 / E-mail info@geomedi.co.jp

取扱い製品 (サービス) handling product (service) 歯科用インプラント、CAD/CAM、その他周辺機器

企業名 company name 株式会社ブレーンベース www.brain-base.com

担当者 the person in charge

住所 address 〒140-0014 東京都品川区大井 1-49-15 アクセス大井町ビル 6 F

TEL 03-3778-0745 / FAX 03-3778-4910 / E-mail mail@brain-base.com

取扱い製品 (サービス) handling product (service) 骨補填材 Arrow Bone-β-Dental. βパウダー

企業名 company name 株式会社デンタリード www.dentalead.co.jp

担当者 the person in charge バイオマテリアル部 江里口 紳一

住 所 address 〒101-0052 東京都千代田区神田小川町 1-11 クロスタビル 12 F

TEL 03-5217-4080 / FAX 03-5217-0366 / E-mail sh-eriguchi@dentalead.co.jp

取扱い製品 (サービス) handling product (service) バイオオス、バイオガイド、ペリオアナリーズ

企業名 company name 株式会社 OSSTEM JAPAN jp. osstem. com

担当者 the person in charge 東京営業部 都 会東

住所 address 〒144-0051 東京都大田区西蒲田 5-27-14 日研アラインビル 4F

取扱い製品(サービス) handling product (service) SS/VS/TS Fixture・Abutment、Cas. Las. Taper. 123、Esset KIT

企業名 company name 株式会社クレディセゾン www.saisoncard.co.jp

担当者 the person in charge 営業推進事業部 東京支社 法人営業部 営業二課 青田 華苗

住所 address 〒112-0013 東京都文京区音羽 2-10-2 音羽 NS ビル 2F

TEL 03-5319-1107 / FAX 03-3944-5290 / E-mail aota5134@cs.saisoncard.co.jp

取扱い製品 (サービス) handling product (service) セゾンカードのご案内

企業名 オクデラメディカル

担当者 押田 浩文

住所 〒114-0002 東京都北区王子 2-26-2

TEL 03-3919-5111/E-mail okudera@carrot.ocn.ne.jp

取扱い製品 オーラルケアグッズ、インプラントケアグッズ、インスツルメント

企業名 王子デンタルラボラトリー (奥寺医療ビル有限会社)

担当者 顧客担当アソシエイト 佐藤 七施

住所 〒114-0002 東京都北区王子 2-26-2

TEL 03-3919-5495/E-mail oji-dental.labo@outlook.jp

取扱い製品 歯科技工物全般

企業名 company name 有限会社クリーンコーポレーション

担当者 the person in charge 山口 千代香

住所 address 〒237-0066 神奈川県横須賀市湘南鷹取 6-2-7

TEL 046-866-6583 / FAX 046-865-8001 / E-mail

取扱い製品(サービス) handling product (service) 『ダイポール』「活性化した水」を生み出す高密度磁束活性水装置他

The Master's Choice

科学的根拠に基づいたワールドスタンダード

骨置換性に優れたβ-TCP 骨補填材

吸収性歯科用骨再建インプラント材

高度管理医療機器(クラスIV)

ArrowBone-\(\beta\)-Dental™

アローボーン - β - デンタル

B.B.C. Graduas Carparation 2000~2000年7 1000~2000年7 ArrowBone~β-Dental**

AG-2

承認番号:22500BZX00553000 FDA 番号:K083372 国際・国内特許取得

顆粒サイズ: 1000 ~ 2000 μ m

β-TCP100%の球状粉末歯面研磨材

B-POWDER

βパウダー

医療機器届出番号:13B1X00145000005 FDA 番号:KO63236

製造販売元

株式会社ブレーンベース

〒140-0014 東京都品川区大井 1-49-15 アクセス大井町ビル 6 階

TEL: 0120-25-4929 FAX: 0120-4929-37 弊社ホームページをご覧ください http://www.brain-base.com

独自のワイヤ放電加工による表面処理で、 優れた骨再生、初期固定性を実現した

純国産インプラントIAT EXA (アイ・エイ・ティー・エクサン)

IAT EXAは、日本ピストンリングがお届けする純国産のインプラントシステム。 日本ピストンリングは、自動車エンジンのピストンリングをはじめとした部品 メーカーとして、その高い技術力が世界的に評価されるグローバル企業であり、 IAT EXAインプラントの中にも、常に世界基準の品質を目指して挑戦する モノづくりの哲学が息づいています。独自のワイヤ放電加工による表面加工の 研究は、昭和大学歯学部の歯科保存学講座歯科理工学部門で1984年から はじまり、実に20年にわたる基礎研究、臨床試験、開発工程を経てIAT EXA として結実しました。骨再生に優れ、初期固定性もよく、施術の際の操作性にも 配慮したIAT EXAは、純国産ならではの高いコストパフォーマンスで、これ からのニッポンのインプラント治療の有効な選択肢の一つとなるはずです。

日本ピストンリング株式会社

新製品事業推進部 インプラントグループ 〒329-0114 栃木県下都賀郡野木町野木1111

本社・営業 〒338-8503 埼玉県さいたま市中央区本町東五丁目12番10号

100 0120-677-344 **100** 048-856-5037 http://www.npr.co.jp/

CGF・PRP等の再生医療の導入をお考え中、またはすでに導入されている方はぜひお試しください!

無點過過一世又実施中!

再生医療記録管理システム お申込みは Web から→

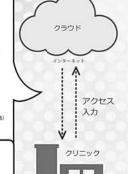
記録を作成し少なくとも10年間保存

再生医療を始めたい でも報告書作成や 管理などが大変そう めんどうな記録・管理・ 書類作成の強い味方!

New!

再生医療提供記録の管理から定期報告書作成サポートまで

歯科および美容再生医療のための 治療プロセス管理クラウドサ


再生医療新法に基づいた 再生医療の実施記録

✓ 再生医療新法に基づいた記録の作成が簡単に

血液採取の記録、加工の記録、投与の記録、経過観察の記録等、 法律で義務付けられている再生医療の実施記録を 簡単に正確に行うことができます。

✓ 定期報告書の作成サポート

地方厚生局へ提出する定期報告書に記載する内容を表示できるため、 簡単に書類を作成することができます。

✓ 各種定期報告の期限の表示

提出期限が近づいたらお知らせメッセージが表示されます。

供血用遠心機 MEDIFUGE

made in Italy

13分間で自動的にフィブリンゲルが作製されます。

pcint 1 簡単!セットしてスタートボタンを押すだけ

point 2 迅速!遠心操作は一回のみで、遠心時間13分

■特長■

- ・「UV サイクル」(装置内殺菌プログラム)を搭載
- ・最大8本まで血液サンプルのセットが可能
- コンパクトで静音設計

※ 再生医療等安全性確保法の施行により、 フィブリンゲルを用いた治療を行う際には 地方厚生局への届出が必要になりました。

AC 100 V (50/60 Hz) 定格電力 120 VA 9.4 kg 本体重量 W280×D320×H240 mm

新発売

BIO-TRANS MATERIAL

YouTube で検索!

バイオトランスボックス使用例

◆ ステンレス製 定価 ¥28,000 (規別)

◆ ガラス容器 2個付

添加物を一切含まない

完全自己血液由来

フィブリンゲル

■強固なゲル

自然なフィブリンの 網目構造が形成されるので、 非常に強いゲルになります。

CIERTO-C

debut

[シェルト キャビネットデリバリー] デビュー

調 和 空 ル

◎ユニット部 販売名「シェルト」 医療機器認証番号 227AFBZX00036000 管理医療機器 特定保守管理医療機器

◎チェア部 販売名「シェルト チェア」

製造販売届出番号 27B1X00042001038 一般医療機器 特定保守管理医療機器

ロタカラベルモント株式合社

- ◆ ホームページアドレス http://www.takara-dental.ip
- 東京本社 〒107-0052 東京都港区赤坂7-1-19 TEL.(03)3405-6877
- 製造販売元 タカラベルモント㈱ 〒542-0083 大阪市中央区東心斎橋2-1-1

FIXくん® 固定装置

北海道医療大学 村田 勝先生/北海道立工業試験場 経済産業省 地域新生コンソーシアム事業 「歯のバイオリサイクル 医療システムの開発」

歯の移植・再植術のための簡易除菌・加工装置

簡易除菌•加工装置

従来、 抜去歯の移植に伴う除菌・加工作業の際 は鉗子で把持し、片手での操作を余儀なくされ ていました。本装置を使用することで安全かつ 確実な把持と、両手での効率よい作業が可能と なります。

形成や根管処理の際も歯根膜を傷つけず、作業 効率が格段にUPします。

特許第4866994号

■医療機器製造販売届出番号13B1X10074000010

実験用硬組織破砕装置 Osteo — Mill

硬組織・再生医療研究のための 自動粉砕 • 加工機

硬組織の破砕

歯等の硬組織を短時間(約3O秒)で均一に冷却粉砕し、顆粒 (O.5-2.0mm)等を作製する装置です。低温下で粉砕しますので有 効な生理活性物質を損ないません。

硬組織の破砕の他、再生医療の研究にも最適です。

特許第4953276号

均一な冷却粉砕・生理活性の保持

mail: G0131@ni.wism-mutoh.co.jp

: 札幌市 北区 北11条 西4丁目 1番地 TEL 011-728-6126 / FAX 011-746-0511 札幌本社 東京本社分室: 東京都足立区西保木間2丁目5-10 TEL 03-5856-6886 / FAX 03-5242-6109

製造販売 **ken** 東京医研株式会社 TEL 03-5807-3011 営業部 : 東京都文京区湯島2-27-2-3F

_{販売} WiSM 株式 **ムトウ**

寝製品製造に関する微生物試験

銀緝久受

細胞が無菌であることを確認します バクテアラート 3D

培地の増殖性能を確認します BioBall

継代中に細菌がコンタミしていないことを確認します · バクテアラート 3D

工程内試験 & 環境モニタリング試験 無菌環境が保たれていることを確認します

エアーイデアル3P PMS製品一式(LasairIIIなど) クオンティスワブ 落下試験用培地、カウントタクト(スタンプ培地)

最終試験

無菌であることを確認します

バクテアラート 3D 無菌試験培地

受入犯

1 エアーイデアル 3P

エアーサンプラー

- ・超軽量のコンパクト設計
- ・アイソレーター内で使用可能
- ·専用培地不要

2 LasairIII

気中パーティクルカウンター

- ·最小粒子感度0.3/0.5µm HFPAフィルター内蔵
- ・空気清浄度のクラス検証

製造元:スペクトリス株式会社PMS事業部

3 環境モニタリング培地

クリーンルーム用培地 (90mm/スタンプ培地)

- ー ・ガンマ線滅菌済み三重包装
- ・室温保存可能
- ・シャーレ蓋ロック機能

試

無菌試験の簡易・迅速化により、試験の省力化、 製品の早期出荷によるコスト削減に役立ちます。

無菌試験の迅速化・自動化を実現

全自動微生物培養検出装置

バクテアラート 3D Dual-T

- 迅速性
- ●簡便性
- ●結果判定の客観性
- 2 温度帯での 同時培養に対応可能

BACT/ALERT 3D™

第十七改正日本薬局方参考情報 「微生物迅速試験法」の"ガス測定法"に該当

薬局方では、無菌試験の培養温度として、32.5℃および22.5℃で の培養が推奨されています。LTモジュールは、室温以下での培養を 可能とする機器です。インキュベーターモジュール (240本用) また はバクテアラート 3D コンビネーション (120本用) と組み合わせる ことで、32.5℃と22.5℃の同時培養が可能となります。

再生医療・抗体医薬業界で実績多数!

抗生剤含有サンプルに 対応可能なボトル有り

バクテアラート用培養ボトル

• • • • • • •	. 1 /13-	H DEVIVIOR		, , , , , , , , , , , , , ,
特 徴	品 番	品 名	培 養	包装単位
抗生剤	259786	iAST 培養ボトル	好気用	100 本
吸着作用無し	259785	iNST 培養ボトル	嫌気用	100本
抗生剤	412990	iFA Plus 培養ボトル	好気用	100 本
吸着作用有り	412991	iFN Plus 培養ボトル	嫌気用	100 本

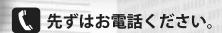
お問い合わせ先

シスメックス株式会社

R&I 事業本部 事業推進部 インダストリアルソリューション課 ソリューションセンター 神戸市西区室谷 1-3-2 〒651-2241 東 京 支 社 東京都品川区大崎 1-2-2 アートヴィレッジ大崎セントラルタワー 8 階 〒141-0032 Tel 0120-022-328 Fax 03-5434-8557 E-mail bmx-ind@sysmex.co.jp

歯学雑誌・新聞 専門広告代理店

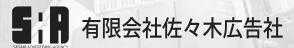
佐々木広告社は このようなお客様の声にお応えします。



制作デザインもできるの?料金は?

どんな雑誌や新聞に 出せば効果があるの?

今ある広告は内容がまったく良くない! 購買に結びつく広告がしたい!


どのように広告を出せば よいのかわからない?

www.sasaki-ad.co.jp

広告デザインからメディア・ミックスまでトータルでサポート!

〒113-0021 東京都文京区本駒込 1-11-5 TEL03-3944-1991 FAX03-3944-1982 E-mail:info@sasaki-ad.co.jp

Dr.R.Marx

Dr. J.Krauser

Dr.T.Kawase

Dr.GUY HOWARD

「AO オーランド大会」と(PRP 臨床・サイナスリフトの原点)を

訪ねて

現在最も注目されている、インプラント臨床においては、骨の再生治療及び症例が多く存在するサイナスリフトと共に PRP の存在は無視できない。そこで、AO 開催に合わせて、その原点である「Dr. R. Marx」(交渉中)を訪ねる研修企画を立案いたしました。それらの影響を受けサイナスは 30 年ほど、PRP 臨床は 20 年近くを経過しています。この時期を鑑見て原点を見直すことが将来の発展に繋がると考えます。また、日本における PRP 研究の第一人者である新潟大学の川瀬知之先生にもご同行願い、研究交流を行います。私どもはその流れをいち早く把握し、日本に情報を流してきた立場から、その仲間たちと企画させていただきました。ご参加希望の方は下記「参加申込書」にてお申込みください。旅行日程・参加費用等の詳細につきましては、お申込された方に別途ご案内申し上げます。是非多くの方のご参加を期待致します。

〇旅行日程 2017 年 3 月 15~21 日 米国フロリダ州 ※日程変更となる場合がございます。

3月15日 出発/同日着~16日 AO 受付/午後 POSTER 発表~17日 3:30PM より PRP 関係の講演~18日 午前まで聴講/午後 移動 マイアミ医科大学 Dr.Guy Howard (交渉中) と Dr.JACK T Krauser「勉強・懇親会」~19日 午前 観光→夕方の便で帰国。

コーディネーター

コーディネーター

厚生歯科 院長 渡辺 孝男

(一社) 東京形成歯科研究会 施設長 奥寺 元

〇研修会企画・主催 一般社団法人東京形成歯科研究会

米国フロリダ 研修 「参加申込書」

(一社) 東京形成歯科研究会 事務局 行

送信先 FAX:03-3919-5114 または E-mail:okudera@carrot.ocn.ne.jp

参加申込締切日 2016 年 10 月 31 日 (月)

■以下・必要事項をご記入の上、上記・送信先まで送信願います。

お名前	貴院名	
TEL	E-mail	

[問い合わせ先] 〒114-0002 東京都北区王子 2-26-2 ウェルネスオクデラビルズ 3F オクデラメディカル内 一般社団法人 東京形成歯科研究会 事務局

☆ 公益社団法人日本口腔インプラント学会認定施設 ● 一般社団法人 東京形成歯科研究会 主催

公益社団法人 日本口腔インプラント学会の教育認定施設である東京形成歯科研究会では、平成 29 年 4 月に開講となる公益社団法人日本口腔インプラ ント学会認定講習会の受講生を募集中です。今年、創立35周年を迎え、国内外で論文を発表する歯科界をリードする教育施設です。毎年認定講習会には、 臨床系から学術系までの一流の講師陣を招聘し、歯科先端医療の講義・実習はもちろん、基礎から専門・応用編までを網羅した充実したカリキュラムを 用意しております。専修医・専門医・指導医の取得に向けても、的確に丁寧に多彩な講師陣が対応いたします。 施設長 医学博士 奥寺 元

|受講期間| 2017年4月~2018年3月

場|オクデラメディカル l会 インスティチュートセンター

> 東京都北区王子2-26-2 [交通/JR・メトロ「王子駅」より徒歩約5分]

定 ■ 20名 ※定員になり次第募集を締め切ります。

受講料 ● 650,000円 → 590,000円

※実習器材・材料費別涂 ※分割払い可能

【オンラインセミナー受講可能】・補講・としてWeb上で受講できるシステムを用意しています。 ※詳細は以下「お問合せ先」まで。

毎月1回・日曜日、年12回開催(内1回は土・日開催)

ハンズオン (Hands-on)

受講対象者

(公社)日本口腔インプラント学会認定 「専修医」「専門医」「指導医」 取得希望の歯科医師

[基本]から「専門・応用」まで インプラントを勉強したい先生

常に最先端の医療情報・技術を 習得希望のベテラン歯科医師

平成29年度 年間スケジュール ※都合により講演日程・内容等が変更となる場合がございます。

年	月	В	曜日	講演種別	講演テーマ	年	月	B	曜日	講演種別	護演テーマ		
П				オリエンテーション	JSOI認定講習会 受講の意義		10	29		講義	各種骨補填材による骨再生の違いについて		
	4	23	В	講義	JSOI専門医 取得について		10	29		講 義/Hands-On	GBR/模型・豚下顎骨を使用した実習		
	7	23	н	講義	自家骨・他家骨によるブロック骨移植について		[11 26	26 F		基調講演	再生医療 血液臨床応用 「国際特別講演会」講演	
				講 義/Hands-On	自家象牙質 移植症例とバイオ象牙質 マテリアル調整	甲成	11			26	26	П	研究発表
	5	28	В	講義	基本的外科手技について	29	١		"	症例発表	再生医療 血液臨床応用「国際特別講演会」口頭発表		
	,	20		Hands-On	切開·縫合 実習 ※豚下顎骨 使用	年					パネルディスカッション	再生医療 血液臨床応用 「国際特別講演会」討論会	
平[6	25	日	講 義/Hands-On	基本から学ぶインプラント画像診断・実習		12	16	±	講 義/Hands-On	解剖学		
成				講義	顎位と美容		12	17	日	講 義/Hands-On	上顎洞底拳上術 ~前歯部審美領域におけるインプラント治療~		
29	7	30	В	講義	FCと歯科美容口腔外科/インブラント臨床		1 20	1 20	28 E		講義	単独歯インプラントについて	
	1	30	"	講義	歯科領域における美容医療・施術について		L.	20		講義	多数歯欠損に対するインプラント補綴		
				講義	講義 抜歯 即時埋入インプラント/PRGF	 	,	25		講義	インブラント外科		
				講義	インブラント理工学	成		23		講義	講義 再生治療とインプラント		
	8	27	日	講義	口腔インプラント埋入手術における全身管理と緊急時の対応	30		-11-	T		講義	高齢者とインプラント	
				Hands-On	採血実習	*	3	25	П	講義	予防/歯周ケア		
	10	1	В	講義	歯周炎とインブラント周囲炎 ~その予防と治療法~		'	25	25	-	調義	インブラント社会学	
	10	'		講義	歯の保存 ~マイクロスコープを用いた歯科治療~					LIVEオペ	ライブサージェリー		

◎ 一般社団法人東京形成歯科研究会とは?

創立 35周年 の歴史

厘牛労働省盟車信封厘牛局設定 東京形成歯科研究会 再生医療等委員会

国際学会 交流会 開催

4 LIVE 7研究

論文作成 投稿の サポー

| 2017年度 (公社)日本口腔インプラント学会認定講習会 受講申込書

以下の必要事項にご記入の上、下記(お問合せ先)内のFAX番号或いは E-mail アドレスまでご送信下さい。 後日、事務局よりご連絡させていただきますが、事務局より連絡がない場合は下記[お問合せ先]までお電話していただくようお願い申し上げます。

フリガナ				=	_					
お名前		ご住所								
貴院名		E-mail				TEL	()	_	
貝匹石		L-IIIaii				FAX	()	_	

お問合せ先

一般社団法人 東京形成歯科研究会 (原生労働省認定 再生医療等委員会 (公益社団法人 日本口腔インプラント学会 認定施設 / 〒114-0002 東京都北区王子2-26-2 ウェルネスオクデラビルズ 3F オクデラメディカル内 事務局 担当:押田浩文

TEL 03-3919-5111 FAX 03-3919-5114 E-mail okudera@carrot.ocn.ne.jp

URB http://www.tpdimplant.com/

施行~ 自己血液由来成長因子を用いた

OKUDERA MEDICAL

Processing Products of Reproduction Material Line Up

Tissue Regeneration Material 3D Morphogenesis Device

組織再生物質3D形態形成器

術者の技量にかかわらず 組織再生物質の形態付与が可能 "Socket Preservation" にも対応

材質: ステンレス (SUS316) 寸法: 199mm x 69.5mm x 26mm

質量:220 g

販売価格:120.000円 ※梱包·発送費、消費税別途

Simple Model Portable Clean Bench

簡易型ポータブルクリーンベン

(垂直気流型クリーンブース)

"法規制対応"リーズナブルな価格で 陽圧型キャビネットを提供

販売価格:61.850円 ※梱包·発送費、消費税別途

OSTEO Crusher & Mini-barrel

・歯牙粉砕器 オステオクラッシャー&ボーンミルミニバレル ø1

医療機器届出番号:09B2X00010000421 般的名称: 歯科用インプラント手術器具

販売価格:60,000円 ※梱包・発送費、消費税別途

小孔1mm 新型ミニバレルの開発

販売価格:90,000円 ※梱包·発送費、消費税別途

医療機器周出春号:1181X1000658D005 般的名称:ボーンミル

※上記製品は、注文状況により、販売価格が変更となる場合があります。 注文受付時、詳細をご説明させていただきます。

自己血由来の成長因子を用いた再生療法

~PRFと自己トロンビンを使用したPRPの生成方法とその臨床応用~

監修:奥寺 元 D.D.S.,Ph.D./ 実技·解説:奥寺 俊允 D.D.S.,Ph.D

- ○商品番号DE124-1(59min.) 再生療法概論/PRF. PRPの生成法
- ○商品番号DE124-2(90min.) PRF&PRP及び自己トロンビンの臨床応用

販売価格:各10,000円 ※梱包·発送費、消費税別途

Leaflet For Patient Explanation

※患者説明用

各医院名入り組織再生治療 A4判 三つ折 リーフレット

患者様に対して、歯科·再生治療について容易に 説明することができる、サイズもコンパクトで便利 なツールです。リーフレット内の各所に貴院名を 掲載して印刷致します。

> 販売価格:100部 10,000円 ※梱包·発送費、消費税別途

歯科・再生医療

厚労省への各種届け出"サポート 「再生医療等安全性確保法」について

2014年11月25日、「再生医療等安全性確保法」施行。患者の血液を採取し、遠心分離して作製される自己 血液由来の PRP,PRF, PRGF は上記・法律の対象となり、それらを実施している医療機関は厚生労働省各 地方原生局への各種届出等が義務付けられました。私どもは、その届出等のサポートさせていただきます。 詳細は以下まで、お問合せ下さい。

OKUDERA**M**EDICAL

販売元 オクデラメディカルグループ

己血由来の成長因子を用いた

商品番号 **DE124-S** 全2巻20,000円+税 各巻10,000円+税 (送料別)

~PRFと自己トロンビンを使用したPRPの生成方法とその臨床応用~

奥寺元 D.D.S.,Ph.D.

(国際血液再生臨床応用会議 ISBB 理事長/国際顎顔面美容口腔外科学術会議会長/日本口腔インプラント学会指導医)

実技・解説

奥寺俊介 D.D.S.,Ph.D.(王子歯科美容外科クリニック/日本口腔インプラント学会専門医)

(公)日本口腔インプラント学会認定施設 東京形成歯科研究会/株式会社オステムジャパン

商品番号 DE124-1 59min.

PRF, PRPの生成法

《成長因子を用いた再生治療:概論》

- インプラント治療における再生療法
- PRP(多血小板血漿)とは
- PRF(多血小板フィブリン)とは
- PRPとPRFの違いについて

《PRF, PRP, 自己トロンビンの生成法》

- PRF(多血小板フィブリン)の生成
- PRP(多血小板血漿)の生成
- 自己トロンビンの生成

最新!開発者 Choukroun @ PRF 生成プロトコル 皆さんにもできるPRF&PRPの生成法

商品番号 DE124-2 90min.

PRF&PRP及び自己トロンビンの臨床応用

- 症例概要・治療計画について
- PRFの生成
- 骨再生誘導療法(GBR)

《症例1: PRF応用の骨再生誘導療法(GBR)》《症例2: 両側上顎洞底挙上術•前歯部抜歯即時埋入》

- 症例概要・治療計画について
- PRF&PRP及び自己トロンビン生成
- 両側上顎洞底挙上術
- 前歯部抜歯即時埋入術

インプラント治療等における再生療 法では、足場(自家骨・他家骨・異種 骨・人工骨)、細胞(間葉系幹細胞・ 骨芽細胞等)、シグナル分子(成長因 子・骨形成タンパク等) の組み合わ せが成功の鍵となります。足場である 骨移植材に細胞が入り込んでいきま す。その細胞を引き寄せるシグナル として成長因子が重要な働きを担っ ています。近年、この足場と成長因子 の併用療法が臨床応用され、良好な 結果を示しています。

そこでこの DVD では、成長因子を用 いた再生療法の概念、及び自己血か ら得られる安全な PRP (多血小板血 漿)や PRF (多血小板フィブリン)の生 成法とその臨床応用例を紹介してい ます。

正しい診査診断、術式の選択をし、骨 造成を行う時に成長因子を併用すれ ば、早期の創傷治癒につながり患者の 負担が軽減されます。これにより確実 な骨再生が行われその後のインプラ ント治療につなげることができます。

【監修 奥寺元、実技・解説 奥寺俊允へのお問い合わせはお気軽に!】 東京都北区王子 2-26-2 ウェルネスオクデラビルズ 3F

より早く簡便に効果的

インプラント関連インスツルメント

オクデラ式インプラントインスツルメント

品名/奥寺式 サイナスリフト インスツルメント

製造元:(株)YDM

"これ 1 本で行える万能サアイナスリフター"

スナイダー粘膜剥離子の Head 部は、初期剥離に容易な卵形で大きさは、 5mm・9mm とした。Shank 部は、頬が影響されず、また洞内挿入が容易な 彎曲の60°として、近心部すなわち鼻腔犬歯窩側と遠心部上顎結節部迄 挿入が容易な長さと角度とし、複雑なインスツルメントを応用しなくて も万能な形態としました。

サイナスリスタ

他症例の初期挿入

ーを初期挿入

任意な方向に剥離

スナイダー膜と骨の間に挿入し剥離 任意な方向に挿入

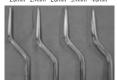
- ●刃先に丸みを付け、尖鋭剪刀より組織に優しい抜糸ができる
- ●片側鍵型にて、迅速・確実に糸を拾い・切断が可。 (切断後の糸も保持)
- ●全長 15 cmで深部迄届く ●スリムな形状で狭い術野に挿入・使用可
- ●切断と除去を同時に併用でき時間短縮

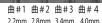
ボーンスプレッディングシステム 商品番号 #003 即時埋入用エレベーター 商品番号 #002

品名/奥寺式ペリオトームセット

歯根膜の歯槽空隙に挿入し、歯槽骨を破損させないように 歯根膜を断裂させながら歯牙を動揺させ、抜歯を行いその 後、抜歯窩にドリリング後インプラントを埋入します。 動揺抜歯のためのエレベーターである。

最初、近心スペースの歯根膜に挿入し、歯根膜を断裂後、 歯槽骨を破損しないようにエレベーター作用を行います。


また同様に遠心部にも挿入し、充分動揺が起きたら撤去します。


品名/奥寺式歯槽骨拡大インプラント窩形成器 医療用具許可番号 09BZ0011 号

直#1 直#2 直#3 直#4 直#5 2.8mm

粘膜骨膜剥離子 商品番号#006

品名/オクデラ式剥離子4本組 医療用具許可番号 11BZ0131 号

製造元:(株) Y D M

粘膜癒着部も比較的容易でしかも挫滅傷になりにくい

癒着した粘膜や大きく粘膜を剥離するには、従来型では時間 と組織のダメージを支えます。人間工学的立場が考案した 剥離子。その形態を Head と Handle に分け、先端部は、鋭利 な刃をつけて蕾状とした。Head は 60°のアングルを与え、 刃は左右につけ、容易な剥離が可能です。

また、尖頭を蕾状の形態とした。その材質は、硬質ステンレス を用いました。

フェイスリフター 商品番号 #004

品名/奥寺式 歯槽骨頂骨膜剥離子

医療用具許可番号 11BZ0131 号

に剥離し、骨面にフィットさせる形態です。左右に分けられており操作が容易です。

小曲#2 粘膜骨膜下に骨補充材を間移入することにより歯槽 骨幅や高さの拡大を行い、インプラントの埋入と共に フェイスリフトを行うものです。ストレートの大小の 剥離子により、歯槽骨頂から口蓋・舌側の剥離を容易

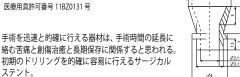
補充材を挿入

ストレートにて揺離 歯槽 を拡大減張切開後、揺離 歯槽頂か舌側の

オステオクラッシャ-商品番号 #005

品名/奥寺式 採取骨片粉砕器 医療用具許可番号 09BZ0011号

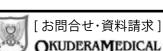
自家骨応用のボーンオギメンテーションは安全で確実に骨造成ができる と言われています。オステオクラッシャーは小骨片を対象に骨粉砕を容易 にします。GBRやGTRなど臨床の応用はIIの幅を広げることができます。


製造元:(株)シオダ

-ジカルステント 商品番号 #007

ドリリング挿入ガイド 製造元:㈱YDM 品名/奥寺式

医療用具許可番号 11BZ0131 号



絡む苦痛と創傷治癒と長期保存に関係すると思われる。 初期のドリリングを的確に容易に行えるサージカル ステント。

〒114-0002 東京都北区王子 2-26-2 ウェルネスオクデラビルズ 3 F

TEL: 03-3919-5111 FAX: 03-3919-5114 E-mail: okudera@carrot.ocn.ne.jp)KUDERAMEDICAL

KUDERAMEDICAL オクデラメディカル

DR. 奥寺 元がプロデュースした 口腔内のケアグッズをご紹介します。

http://okuderamedical.main.jp/

音波振動式 アタッチメント

1台の「音波振動式アタッチメント」で、5つの とが可能な、 1 台 5 役"の便利なデンタルケアグッズです。

- ① 3 筒所(歯の表・裏・噛合せ) 同時に磨ける。
- ②歯肉ポケットの中にまで ー ブラシが入り込み、プラーク (歯垢)を除去。
- ③ 熱湯消毒で衛生面も安心。

- ①歯間部の形態に合わせた 三角タイプ
- ② 上の二辺でクリーニング、 底辺で歯ぐきのマッサージ
- ③ 北海道・白樺の木を使用

- ① 舌乳頭に付着した舌苔(プ ラーク等)除去
- ② 嘔吐反応が出にくいサイズ
- ③ 弾力があり、バネ効果で舌に かかる力をやわらげます。

- ①マッサージ効果を考えた 針状と半球状の二重構造
- ② シリコンゴムを使用し、先端 を丸くすることで、歯や歯 ぐきにかかる負担を軽減
- ③ 持ちやすくするために、ハン ドル部にカーブをつけた デザイン

- ① 水をつけてみがくだけで、歯 の着色汚れを除去
- ② 2~3ミクロンの繊維(メラ ミンフォーム) で歯の表面を
- ③ 歯を傷つけることなく、歯の 表面を掃除

お問合わせ

オクデラメディカル

〒114-0002 東京都北区王子2-26-2 ウェルネスオクデラビルズ 3F

TEL: 03-3919-5111 FAX: 03-3919-5114 E-mail: okudera@carrot.ocn.ne.jp

ONLINE SHOP (通販サイト)

http://okuderamedical. main.ip

王子フィットネス&GYM 「レンタルスタジオ

http://oji-gym.boy.jp/

2ヶ月で10kg以上の減量達成者多数。 大ー60kg減量達成(1年間)の実績。

"トップ ボディビルダーが プロのボディメイクのコーチでいる理由"

※HPをご覧ください。

マンツーマン トレーニングと

健康になりながら色々な食材が食べられる食事指導で理想のボディに。

チーフコーチ 近藤 一隆 ボディビル 国際大会 ゴールドメダリスト

所: 〒114-0002 東京都北区王子2-26-2 ウェルネスオクデラビルズ4F 住

通:[電車]JR王子駅 地下鉄南北線王子駅 徒歩約6分 王子銀座通り中央 [バス]王子2丁目下車

T E L:03-3912-9275 FAX:03-3919-5114 E-mail:okudera@carrot.ocn.ne.jp

営業時間:月~土 11:00~22:00/日 10:00~18:00 定休日:祝日·年末年始

Clinical and Experimental Dental Research

Open Access

Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects

Kazuhiko Nishiyama¹, Toshimitsu Okudera¹, Taisuke Watanabe¹, Kazushige Isobe¹, Masashi Suzuki¹, Hideo Masuki¹, Hajime Okudera¹, Kohya Uematsu^{2,3}, Koh Nakata⁴ & Tomoyuki Kawase³

Keywords

Plasma rich in growth factors, platelet-rich plasma, platelets, white blood cells.

Correspondence

Tomoyuki Kawase, Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan. Tel: (+81) 25-227-2927; Fax: (+81) 25-227-2927;

Received: 01 December 2015; Revised:

07 February 2016; Accepted: 10 February 2016

E-mail: kawase@dent.niigata-u.ac.jp

doi: 10.1002/cre2.26

Abstract

Platelet-rich plasma (PRP) is widely used in regenerative medicine because of its high concentrations of various growth factors and platelets. However, the distribution of blood cell components has not been investigated in either PRP or other PRP derivatives. In this study, we focused on plasma rich in growth factors (PRGF), a PRP derivative, and analyzed the distributions of platelets and white blood cells (WBCs). Peripheral blood samples were collected from healthy volunteers (N=14) and centrifuged to prepare PRGF and PRP. Blood cells were counted using an automated hematology analyzer. The effects of PRP and PRGF preparations on cell proliferation were determined using human periosteal cells. In the PRGF preparations, both red blood cells and WBCs were almost completely eliminated, and platelets were concentrated by 2.84-fold, whereas in the PRP preparations, both platelets and WBCs were similarly concentrated by 8.79- and 5.51-fold, respectively. Platelet counts in the PRGF preparations were positively correlated with platelet counts in the whole blood samples, while the platelet concentration rate was negatively correlated with red blood cell counts in the whole blood samples. In contrast, platelet counts and concentration rates in the PRP preparations were significantly influenced by WBC counts in whole blood samples. The PRP preparations, but not the PRGF preparations, significantly suppressed cell growth at higher doses in vitro. Therefore, these results suggest that PRGF preparations can clearly be distinguished from PRP preparations by both inclusion of WBCs and dose-dependent stimulation of periosteal cell proliferation in vitro.

Introduction

Platelet-rich plasma (PRP) is a source of growth factors that promote wound healing and tissue regeneration (Marx et al. 1998) and is widely used in a variety of fields involving regenerative therapy (Kawase 2015). In addition to platelet-derived growth factors, PRP provides fibrinogen, which is converted into insoluble fibrin fibers, to support cell adhesion and control the delivery of growth factors (Kawase et al. 2003). Furthermore, PRP provides anti-inflammatory factors and anti-bacterial peptides to optimize the local environment by suppressing inflammatory responses (El-Sharkawy et al. 2007; Cieslik-Bielecka et al. 2012b; Tohidnezhad et al. 2012; Burnouf et al. 2013). Because the augmentation of inflammatory responses delays or suppresses wound healing and tissue

regeneration, it is important to control acute inflammation to induce the best performance of growth factors. Therefore, it can be speculated that when a regenerative action is combined with an anti-inflammatory action, these actions will exert synergistic regenerative effects at sites of PRP application.

Along with platelets, high concentrations of white blood cells (WBCs) are found in PRP preparations. WBCs are known to release pro-inflammatory cytokines, such as interleukin-6. The presence of WBCs in PRP preparations may augment the inflammatory response at the application sites (Anitua et al. 2015b). However, in various clinical and preclinical animal studies (Burnouf et al. 2013; Mariani et al. 2014; McCarrel et al. 2014), PRP has frequently been observed to suppress infection and inflammation. These data suggest that PRP preparations possibly contain significant amounts

©2016 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd.

•

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

¹Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan

²Division of Oral and Maxillofacial Surgery, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan

³Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan

⁴Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan

Platelets and WBCs in PRGF K. Nishiyama et al.

of anti-inflammatory cytokines and anti-bacterial peptides (Cieslik-Bielecka et al. 2012b; Tohidnezhad et al. 2012; Burnouf et al. 2013) that control acute inflammation. Choukroun (Cieslik-Bielecka et al. 2012a), a developer of platelet-rich fibrin (PRF), has claimed that appropriate numbers of WBCs should be contained in PRP and its derivatives to facilitate wound debridement. Based on his concept, Choukroun recently improved PRF (Dohan et al., 2006) to an advanced form (A-PRF) that is further enriched with WBCs (Ghanaati et al. 2014). In contrast, based on his belief, Anitua developed PRGF by eliminating WBCs from PRP (Anitua et al. 2015a,2015b). To our knowledge, although adverse events or complications have not yet been reported for either derivative, the use of WBCs for healing and regeneration remains controversial in clinical settings.

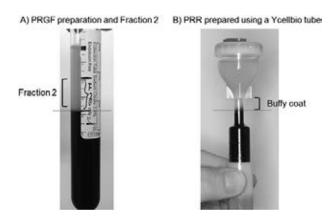
In this study, we examined the fractionation of WBCs and platelets during PRGF preparations and compared these characteristics with those of PRP preparations. To obtain the maximum benefit from growth factors, it is usually thought that platelets should be maximally concentrated; however, if WBCs are simultaneously concentrated in the platelet fraction, the positive effects of growth factors may be reduced. To address this matter, we also examined the effects of PRGF and PRP preparations on the proliferation of human periosteal cells in vitro.

Materials and Methods

Preparation of plasma rich in growth factors

According to the manufacturer's instructions, blood samples were collected from seven healthy volunteers (male; 37–68 years old) using 18G needles and PRGF-Endoret® Tubes (BTI Biotechnology Institute, S.L., Miñano, Spain) containing 0.2 mL of sodium citrate. The tubes were centrifuged at 580 g for 8 min. Fraction 2 (the fraction above

the interface of the red thrombus fraction) was collected as PRGF in this study (Fig. 1A) and subjected to the following experiments.


Preparation of platelet-rich plasma

An anticoagulant, acid citrate dextrose (1.5 mL) (ACD-A; Terumo, Tokyo, Japan), was added to syringes equipped with 18G needles, and blood samples (12.0 mL) were collected from the same volunteers. Because of its high efficiency, PRP was prepared using Food and Administration-approved Ycellbio PRP preparation tubes (YCELLBIO MEDICAL CO., LTD., Seoul, Korea) (Fig. 1B). Briefly, according to the manufacturer's instructions, freshly collected blood samples were transferred to funnel-shaped tubes and centrifuged at $1800\,g$ for 4 min. After adjusting the level of the buffy coat, the tubes were centrifuged for an additional 4 min. The resulting PRP fractions were collected using syringes equipped with long needles (N=14).

The study design and consent forms for all procedures performed with the study subjects were approved by the ethical committee for human subject use at Niigata University School of Medicine in accordance with the Helsinki Declaration of 1975 as revised in 2008.

Determination of blood cell counts

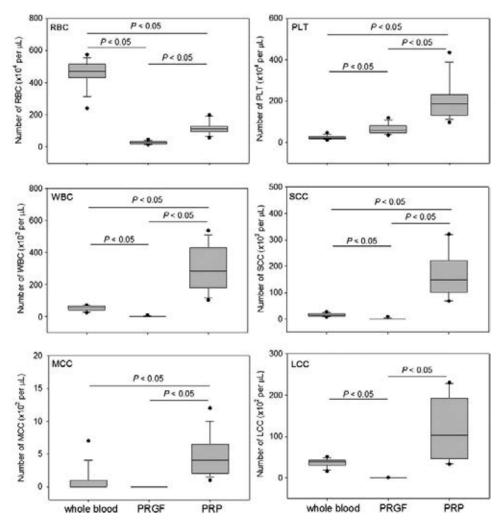
The numbers of blood cells in whole blood samples, PRGF preparations, and PRP preparations were determined using an automated hematology analyzer (pocH-100iV diff; Sysmex, Kobe, Japan). First, red blood cells (RBCs), WBCs, and platelets were counted immediately after blood collection. Second, freshly prepared PRGF and PRP samples were used for the blood cell count. The obtained values were adjusted by their relative dilution factors.

Figure 1. Images of PRGF and PRP preparations produced using a vacuum blood collection tube for PRGF preparation (A) or a Ycellbio PRP preparation tube (B), respectively. PRGF, plasma rich in growth factors; PRP, platelet-rich plasma.

K. Nishiyama et al. Platelets and WBCs in PRGF

Evaluation of cell proliferation

Human alveolar bone-derived periosteal cells were isolated and cultured as described in the succeeding discussion. With informed consent, human periosteum tissue segments were aseptically dissected from the periodontal tissues of the healthy buccal side of the retromolar region of the mandibles of nonsmoking volunteers (Kawase et al. 2009). Small periosteum pieces were expanded to form cell-multilayered periosteal sheets (ϕ 30–40 mm) in humidified 5% CO2, 95% air at 37°C with Medium 199 (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) (Invitrogen), 25 μ g/mL ascorbic acid 2-phosphate, and antibiotics. Then, the periosteal sheets were enzymatically digested to release single cells. The resulting cells were further expanded in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS.


Single cells were seeded at a density of 1×10^4 in 6-well plates and pre-cultured for 24 h in 1% FBS-containing DMEM. The

medium was replaced with the same fresh medium containing PRGF or PRP (0.31–10%), and the cells were cultured for 48 h. Cells were then photographed and counted in four randomly selected views using IMAGE-PRO PLUS software (Media Cybernetics Manufacturing, Warrendale, PA).

All subjects enrolled in this study responded positively to an informed consent that was approved on 22 June 2006, by the Ethics Committee for Human Subject Use at Niigata University Medical and Dental Hospital in accordance with the Helsinki Declaration of 1975 as revised in 2008.

Statistical analysis

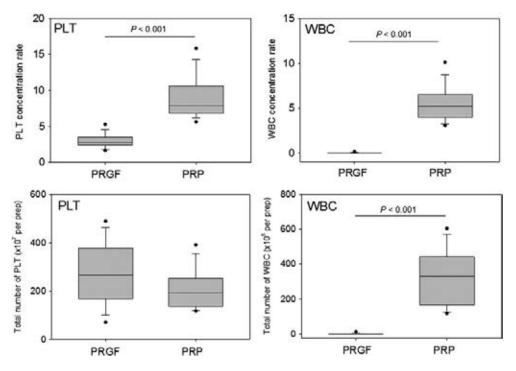
After a normality test, the statistical significance of differences among individual groups was analyzed using Student's *t*-test for two groups or one-way analysis of variance for three or

Figure 2. The number of RBCs, WBCs (SCC, MCC, and LCC), and platelets in whole blood samples, PRGF preparations, and PRP preparations. The center lines of the boxes represent medians (N = 14). SCC: lymphocytes, MCC: monocytes, and LCC: gametocytes. RBC, red blood cells; WBCs, white blood cells; PRGF, plasma rich in growth factors; SCC, small white blood cells; MCC, middle white blood cells.

Platelets and WBCs in PRGF K. Nishiyama et al.

more groups as implemented in SIGMAPLOT software (Version 12.5; Systat Software, Inc., San Jose, CA). Comparisons between individual groups were determined using Tukey's multiple comparison test. *P*-values < 0.05 were considered significant.

Relationships among the three cell components were analyzed by simple linear regression. Linear correlation coefficients were calculated using SIGMAPLOT software. When the *R*-value was within the 0.7–0.9 and 0.40–0.69 ranges, the correlations were considered strong and moderate, respectively. When *R* was less than 0.4, the correlation was considered weak and not significant.


Results

Comparisons of RBC, WBC, and platelet counts between PRGF and PRP preparations are shown in Figure 2. In the PRGF preparations, both RBCs and WBCs were almost completely eliminated, and platelets were significantly concentrated by 2.84-fold. Conversely, in the PRP preparations, the concentration rates of platelets and WBCs in the PRP fractions were 8.79- and 5.51-fold over the whole blood samples, respectively. For the WBC counts, lymphocytes (SCC: small white blood cells) were the most concentrated by 10.2-fold, whereas monocytes (MCC: middle white blood cells) and gametocytes (LCC: large white blood cells) were 4.27- and 3.30-fold, respectively.

The concentration rates of platelets and WBCs and the total numbers of platelets and WBCs per preparation were compared between PRGF and PRP fractions in Figure 3. Although the concentration rate of platelets was substantially higher in the PRP fractions than in the PRGF fractions, the total number of platelets per preparation was slightly higher in the PRGF fractions compared with the PRP fractions. WBCs were concentrated in the PRP fractions, whereas WBCs were excluded from the PRGF fractions.

The correlations between blood cell components (platelets, RBCs, and lymphocytes) in whole blood samples and platelet counts and concentration rates in the resulting PRGF and PRP preparations are shown in Figure 4. Significantly positive correlations were observed between platelet counts in whole blood samples and those in the PRGF and PRP preparations [Pearson correlation coefficient values (R) = 0.798 and 0.767, respectively]. RBC counts in the whole blood samples were negatively correlated with the platelet concentration rates in the PRGF and PRP preparations. In addition, lymphocyte counts in the whole blood samples influenced the platelet concentration rate (R = 0.468) negatively and platelet counts (R = 0.641) positively only in the PRP preparations.

The effects of PRGF and PRP preparations on the proliferation of human periosteal cells are shown in Figure 5. After 48-h treatments, the PRGF preparations (0.31–10%) increased the number of periosteal cells in a dose-dependent

Figure 3. Concentration rates and number of platelets and WBCs in whole blood samples and PRGF fractions. The center lines of the boxes represent medians (*N* = 14). WBC, white blood cell; PRGF, plasma rich in growth factors; PRP, platelet-rich plasma; PLT, platelet.

K. Nishiyama et al. Platelets and WBCs in PRGF

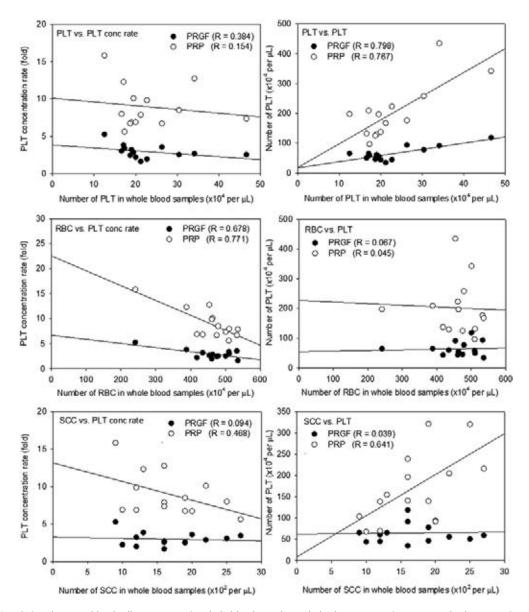
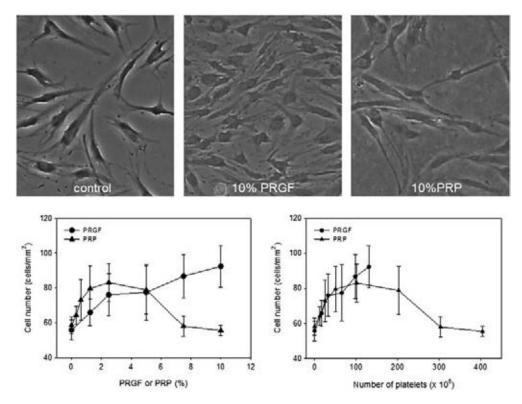


Figure 4. Correlations between blood cell components in whole blood samples and platelet concentration rates or platelet counts in PRGF and PRP preparations (N = 14). RBC, red blood cells; PRGF, plasma rich in growth factors; PLT, platelet; PRP, platelet-rich plasma; SCC, small white blood cells.


manner. In contrast, the PRP preparations (0.31–10%) showed a biphasic effect on cell proliferation with maximal effects at 2.5%. However, when the doses (*x*-axis) were normalized by conversion to platelet counts, the effects of PRGF appeared to be almost identical to those of low doses of PRP. Therefore, to further examine the possible dependency of these phenomena on platelet counts, we performed an additional experiment using platelet-concentrated PRGF preparations. As shown in Figure S1, even PRGF preparations containing the highest platelet counts, which were equal to 40% of the original PRGF preparations, still stimulated proliferation of the periosteal cells. However, PRP preparations

exhibited the biphasic effect that was particularly evident at higher platelet counts.

Discussion

The specific gravities of RBCs, WBCs, platelets, and plasma are 1.095–1.101, 1.055–1.095, 1.058, and 1.024–1.030, respectively (Malchesky 1996). Based on these values, the theoretical order of the individual fractions from the bottom to the top of the centrifugation tube during PRP preparation is the RBC fraction, the WBC fraction, and the platelet fraction. However, because of the properties of the fractions and the

Platelets and WBCs in PRGF K. Nishiyama et al.

Figure 5. Effects of PRGF and PRP preparations on the proliferation of human periosteal cells. Cells were treated with PRGF or PRP at the indicated doses for 48 h in 1% FBS-containing medium. (A) Representative images of the cells, (B) dose (%)—response curves for PRGF-treated or PRP-treated periosteal cells (N = 4), and (C) platelet count—response curves for PRGF-treated or PRP-treated periosteal cells (N = 4). PRGF, plasma rich in growth factors; PRP, platelet-rich plasma.

cells, such as the viscosity of the plasma, cell size, and cell deformability, individual blood cell types cannot clearly be fractionated. Therefore, the upper part of the RBC fraction below the buffy coat also contains WBCs and platelets, and the buffy coat contains not only platelets but also WBCs.

In this study, we demonstrated that relatively slow centrifugation for the preparation of PRGF was not suitable for forming a clear buffy coat, which resulted in low platelet concentration rates, but it was beneficial for separating platelets from WBCs. Therefore, WBC counts in the whole blood samples did not significantly influence platelet fractionation in the PRGF preparations. However, RBC counts in the whole blood samples somehow significantly reduced the platelet concentration rates in both the PRGF and PRP preparations. In blood vessels in which shear flow occurs, RBCs experience a wallnormal force that arises because of their deformation and propels them away from the wall. By volume exclusion, however, platelets marginate toward the wall (Vahidkhah et al. 2014). During centrifugation of blood samples contained in tubes, similar phenomena may take place depending on the centrifugation speed, and this affects the distribution of platelets and RBCs, especially near the tube walls. This possible mechanism is illustrated in Figure 6. During slow centrifugation, similar to PRGF preparation, it is theoretically thought that blood cells are fractionated mainly by their specific gravities. Therefore, cell fractions that overlap each other are rarely obtained. However, in a case of fast centrifugation, it is thought that blood cells are subject to various influences and that cell fractions can overlap each other.

Recently, studies have proposed that the optimal concentration of platelets for tissue regeneration would be at most approximately threefold higher than that of whole blood (Weibrich et al. 2004; Graziani et al. 2006; Rappl 2011). The over-concentration of platelets reduces the positive effects of PRP preparations on tissue regeneration. Our data obtained from PRP-treated cell cultures supported this concept; however, those of PRGF-treated cell cultures suggested that other components in the PRP preparations, rather than platelets, may interfere with the expected PRP-induced cell growth.

Based on their belief that WBCs should be eliminated, Anitua and his research group developed PRGF (Anitua et al. 2007). In this study, we demonstrated that the platelet concentration rate in the PRGF preparations was in the optimal range. Even though platelets were concentrated in PRGF preparations, PRGF preparations still maintained their mitogenic action. In addition, even though platelet-poor plasma was added to diluted original PRP preparations two to three times, we preliminarily observed that higher doses

K. Nishiyama et al. Platelets and WBCs in PRGF

A) Fractionation during PRGF preparation B) Fractionation during PRP preparation

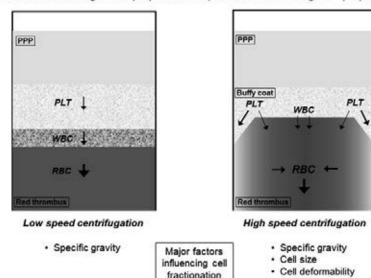


Figure 6. Scheme for wall-normal force and volume exclusion that may occur in a tube. RBC, red blood cells; PLT, platelet; WBC, white blood cell; PPP, platelet-poor plasma.

(~10%) of the diluted PRP preparations still significantly reduced the stimulatory effects of PRP observed at lower doses (Kawase et al. unpublished observations). On the other hand, a recent article demonstrated that dopamine and serotine released from activated platelets are necessary to endogenous stem cell recruitment and subsequent dentin repair (Baudry et al. 2015). These monoamines may suppress the proliferation of target cells while accelerating cell differentiation. Therefore, at present, we speculate that a factor(s) contained in PRP preparations, but not in PRGF preparations, such as WBC-derived factors, is the most involved in the reduction of the accelerated proliferation. However, it cannot be ruled out that other unidentified components released from activated platelets may also solely or cooperatively influence the periosteal cell proliferation. Further investigation should be performed to identify the key factors involved in this phenomenon.

Conclusions

The inter-individual efficacy and potency of PRP preparations has been explained solely by the individual-dependent levels of growth factors. In this study, the statistical analysis demonstrated that WBCs and platelets could be concentrated similarly in the individual PRP preparations. However, we also found that slow centrifugation can remove WBCs from the platelet fraction during PRGF preparation. Because WBCs have often been indicated as a negative potent factor for tissue regeneration, the individual-dependent differences in WBC counts could be an alternative or additional explanation for

the inter-individual efficacy differences in PRP preparations. PRGF preparation, in which platelets are optimally concentrated and WBCs are excluded, may be a more appropriate application for tissue regeneration than PRP preparations.

Acknowledgments

· Fluid viscosity

The authors are grateful to YCELLBIO MEDICAL CO., LTD. (Seoul, Korea) for providing Ycellbio PRP preparation tubes. This study was financially supported by JSPS KAKENHI (grant numbers 24390443, 24390465, and 15H06228).

Conflicts of Interest

The authors declare that they have no competing interests.

References

Anitua, E., Sanchez, M., Orive, G., Andia, I., 2007. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 28, 4551–4560.

Anitua, E., Zalduendo, M., Troya, M., Padilla, S., Orive, G., 2015a. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties. PLoS One 10 e0121713.

Anitua, E., Zalduendo, M.M., Prado, R., Alkhraisat, M.H., Orive, G.,
2015b. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion. J. Biomed. Mater. Res. A 103, 1011–1020.
Baudry, A., Alleaume-Butaux, A., Dimitrova-Nakov, S. Goldberg, M., Schneider, B., Launay, J.M., et al., 2015. Essential roles of

Platelets and WBCs in PRGF K. Nishiyama et al.

- dopamine and serotonin in tooth repair: functional interplay between odontogenic stem cells and platelets. Stem Cells 33, 2586–2595.
- Burnouf, T., Chou, M.L., Wu, Y.W., Su, C.Y., Lee, L.W., 2013. Antimicrobial activity of platelet (PLT)-poor plasma, PLT-rich plasma, PLT gel, and solvent/detergent-treated PLT lysate biomaterials against wound bacteria. Transfusion 53, 138–146.
- Cieslik-Bielecka, A., Choukroun, J., Odin, G., Dohan Ehrenfest, D. M., 2012a. L-PRP/L-PRF in esthetic plastic surgery, regenerative medicine of the skin and chronic wounds. Curr. Pharm. Biotechnol. 13, 1266–1277.
- Cieslik-Bielecka, A., Dohan Ehrenfest, D.M., Lubkowska, A., Bielecki, T., 2012b. Microbicidal properties of leukocyte- and platelet-rich plasma/fibrin (L-PRP/L-PRF): new perspectives. J. Biol. Regul. Homeost. Agents 26, 43S–52S.
- Dohan, D.M., Choukroun, J., Diss, A., Dohan, S.L., Dohan, A.J., Mouhyi, J., et al., 2006. Platelet-rich fibrin (PRF): a secondgeneration platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101, e51–e55.
- El-Sharkawy, H., Kantarci, A., Deady, J., Hasturk, H., Liu, H., Alshahat, M., et al., 2007. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J. Periodontol. 78, 661–669.
- Ghanaati, S., Booms, P., Orlowska, A., Kubesch, A., Lorenz, J., Rutkowski, J., et al., 2014. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J. Oral Implantol. 40, 679–689.
- Graziani, F., Ivanovski, S., Cei, S., Ducci, F., Tonetti, M., Gabriele, M., 2006. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin. Oral Implants Res. 17, 212–219.
- Kawase, T., 2015. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology 103, 126–135.
- Kawase, T., Okuda, K., Kogami, H. et al., 2009. Characterization of human cultured periosteal sheets expressing bone-forming potential: in vitro and in vivo animal studies. J. Tissue Eng. Regen. Med. 3, 218–229.
- Kawase, T., Okuda, K., Wolff, L.F., Yoshie, H., 2003. Platelet-rich plasma-derived fibrin clot formation stimulates collagen synthesis in periodontal ligament and osteoblastic cells in vitro. J. Periodontol. 74, 858–864.
- Malchesky, P.S., 1996. Extracorporeal artificial organs, in: Ratner, B. D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (Eds.), Biomaterials

- Science: An Introduction to Materials in Medicine. Academic Press, San Diego, CA, USA, pp. 400–412.
- Mariani, E., Filardo, G., Canella, V. Berlingeri, A., Bielli, A., Cattini, L., et al., 2014. Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy 16, 1294–1304.
- Marx, R.E., Carlson, E.R., Eichstaedt, R.M. et al., 1998. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85, 638–646.
- McCarrel, T.M., Mall, N.A., Lee, A.S., Cole, B.J., Butty, D.C., Fortier, L.A., 2014. Considerations for the use of platelet-rich plasma in orthopedics. Sports Med. 44, 1025–1036.
- Rappl, L.M., 2011. Effect of platelet rich plasma gel in a physiologically relevant platelet concentration on wounds in persons with spinal cord injury. Int. Wound J. 8, 187–195.
- Tohidnezhad, M., Varoga, D., Wruck, C.J., Podschun, R., Sachweh, B. H., Bornemann, J., et al., 2012. Platelets display potent antimicrobial activity and release human beta-defensin 2. Platelets 23, 217–223.
- Vahidkhah, K., Diamond, S.L., Bagchi, P., 2014. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106, 2529–2540.
- Weibrich, G., Hansen, T., Kleis, W., Buch, R., Hitzler, W.E., 2004.Effect of platelet concentration in platelet-rich plasma on perimplant bone regeneration. Bone 34, 665–671.

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher's web-site.

Figure S1. Effects of platelet-concentrated PRGF preparations on the proliferation of human periosteal cells. Blood samples were collected from healthy male volunteers (age: 26 and 48-years old) and centrifuged to prepare PRGF fraction 2. This fraction was further centrifuged to concentrate platelets by 4-fold. The number of platelets were counted at the end of each step. These platelet-concentrated PRGF preparations or the normal PRP preparations were added to cell culture medium at concentrations of 1.25%, 2.5%, 5% or 10% (w/v) and cell numbers were evaluated by image analysis. PPP preparations were added as control at a dose of 5% or 10%. Differences between two groups were assessed by Student's t-test. When normality testing failed, a Mann-Whitney Rank Sum test was performed. A *p*-value of less than 0.05 was considered to be statistically significant. N = 4 - 7.

RESEARCH Open Access

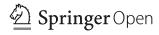
Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF)

Hideo Masuki^{1†}, Toshimitsu Okudera^{1†}, Taisuke Watanebe¹, Masashi Suzuki¹, Kazuhiko Nishiyama¹, Hajime Okudera¹, Koh Nakata², Kohya Uematsu⁴, Chen-Yao Su³ and Tomoyuki Kawase^{4*}

Abstract

Background: The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF).

Methods: PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits.


Results: Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses.

Conclusions: These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

Keywords: Growth factor, Platelet-rich plasma, Platelet-rich fibrin, Plasma rich in growth factors, Concentrated growth factors

Abbreviations: ACD, Acid citrate dextrose solution; ANOVA, Analysis of variance; A-PRF, Advanced platelet-rich fibrin; A-PRF*ext*, A-PRF extract; CGF, Concentrated growth factors; CGF*ext*, CGF extract; ELISA, Enzyme-linked immunosorbent assay; IL-1β, Interleukin-1β; IL-6, Interleukin-6; PDGF-BB, Platelet-derived growth factor-BB; PLT, Platelet; PRGF, Plasma rich in growth factors; PRP, Platelet-rich plasma; RBC, Red blood cell; TGF-β1, Transforming growth factor-β1; VEGF, Vascular endothelial growth factor; WBC, White blood cell

Full list of author information is available at the end of the article

^{*} Correspondence: kawase@dent.niigata-u.ac.jp

[†]Equal contributors

⁴Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan

Background

Platelet-rich plasma (PRP) was originally demonstrated to be effective in the operation of alveolar ridge augmentation and immediately spread to the fields of periodontal and oral maxillofacial surgery [1]. This clinical application was endorsed by evidence that several major growth factors are contained at high levels in PRP preparations. However, for some reasons, such as low handling efficiency, addition of animal-derived thrombin for clotting, and fundamental individual differences, it has been indicated that it is difficult to reproducibly control the quality of PRP preparations at similar levels [1]. To overcome these drawbacks, Anitua developed plasma rich in growth factors (PRGF) by modifying the procedure of PRP preparation [2]. It simplified the preparation protocol and replaced animal-derived thrombin with calcium for clotting.

Platelet-rich fibrin (PRF), a self-clotted preparation of PRP derivative, also overcame these matters. Blood samples collected in the absence of anticoagulants are immediately centrifuged to form fibrin clots. This simple preparation procedure has been widely accepted in various medical fields and spread worldwide. Choukroun, a developer of PRF, further modified it to an advanced form (A-PRF), which is expected to contain a relatively greater number of white blood cells (WBC) [3]. Because of low-speed centrifugation, this fibrin clot is softer than that of the original PRF. On the other hand, concentrated growth factors (CGF), another modified form of PRF, are prepared by repeatedly switching the centrifugation speed and are characterized as a relatively stiffer fibrin clot [4]. Therefore, it has been anticipated that the difference in mechanical characteristics may produce a difference in the growth factor content.

The aim of this study was to address the question as to whether growth factors are equally or more concentrated in A-PRF or CGF preparations and whether these preparations function like a reservoir of major platelet-derived growth factors as do PRP and PRGF preparations to facilitate wound healing and tissue regeneration. Thus, we evaluated the levels of the selected major growth factors and pro-inflammatory cytokines in A-PRF and CGF extracts and compared the data with those of PRP and PRGF

preparations. To reduce the individual-dependent differences in the growth factor levels, we collected sufficient volumes of peripheral blood samples from the same donors both in the presence or absence of anticoagulants and immediately prepared four types of platelet concentrates.

Methods

Preparation of PRP

Based on their characteristics and fractionation, the differences among PRP and PRP derivatives are concisely described in our previous article [1].

As previously described [5, 6], blood samples (11.5 mL) were collected using syringes or vacuum blood collection tubes equipped with 18G needles from seven non-smoking, healthy, middle-aged, male volunteers (37 to 68 years old) three times with a 2-week interval. Even though they are suffering from lifestyle-related diseases and receiving medication, these donors had no hindrance in daily life.

To quantify each blood cell component, peripheral blood (~12.0 mL) was collected using syringes containing acid citrate dextrose solution (ACD-A) (1.5 mL; Terumo, Tokyo, Japan). Because of its high efficiency, PRP was prepared using FDA-approved Ycellbio PRP preparation tubes (Ycellbio Medical Co., Ltd., Seoul, South Korea). As previously described [7], freshly collected blood samples were subjected to blood cell count and simultaneously transferred to funnel-shaped tubes and centrifuged at 3200 rpm (1800g) for 4 min (Table 1). After adjusting the level of the buffy coat, the tubes were centrifuged for an additional 4 min. The resulting PRP fractions (buffy coat) were collected using syringes equipped with long needles and stored at -80 °C until determination of growth factor levels and the in vitro bioassay using periosteal cells (n = 20). Small aliquots of the freshly prepared PRP were subjected to blood cell

The study design and consent forms for all procedures performed with the study subjects were approved by the ethical committee for human subjects at Niigata University School of Medicine in accordance with the Helsinki Declaration of 1975 as revised in 2008.

Table 1 Centrifugation conditions for preparation of PRP, PRGF, A-PRF and CGF

Preparation type	Models	Rotor		Rotational spe	Time	
			(mm)	rpm	g	(min)
PRP	Kubota4000	swing	160	3,200	1,800	4 x 2
PRGF	Bti Endoret	swing	151.6	1,850	580	8
A-PRF	A-PRF	angle	105	1,300	198	8
CGF	Medifuge	angle	85	2,700 2,400 2,700 3,000	692 547 692 855	2 4 4 3

Preparation of PRGF

According to the manufacturer's instructions, blood samples (~9.6 mL) were collected from the same volunteers using 18G needles and PRGF-Endoret tubes (BTI Biotechnology Institute, S.L., Miñano, Spain), which contained 0.2 mL sodium citrate. The tubes were centrifuged at 1850 rpm (580g) for 8 min (Table 1) [8]. Fraction 2 (a fraction above the buffy coat) was collected and stored at -80 °C until use. Small aliquots of the freshly prepared PRP were subjected to blood cell count.

Preparation and homogenization of A-PRF and CGF

As described previously [7, 9], blood samples (~9.5 mL) collected without anticoagulants using vacuum plain glass tubes (A-PRF+: Jiangxi Fenglin Medical Technology Co. Ltd, Fengcheng, China) or conventional vacuum plain glass tube (Plain BD Vacutainer Tube; Becton, Dickinson and Company, Franklin Lakes, NJ, USA) from the same donors were immediately centrifuged by an A-PRF centrifugation system (A-PRF12: Dragon Laboratory Instruments Ltd., Beijing, China) or a Medifuge centrifugation system (Silfradent S. R. L., Santa Sofia, Italy) (for the conditions of centrifugation, see Table 1). After eliminating the red blood cell (RBC) fractions, the resulting A-PRF and CGF clots were placed on dry gauze to eliminate excess amounts of serum (~10 s) and then transferred to freezing tubes for determination of growth factor contents. Frozen samples stored at -80 °C were then minced, homogenized by disposable homogenizers (BioMasher II, Nippi, Inc., Tokyo, Japan), and centrifuged at 3000 rpm for 10 min at ambient temperature. The resulting supernatants were stored at -80 °C until use.

For determination of blood cell counts, another set of A-PRF/CGF clots was prepared from blood samples obtained from the same donors.

Determination of blood cell counts

The numbers of blood cells were determined twice in the process of PRP preparation using an automated hematology analyzer (pocH-100iV diff; Sysmex, Kobe, Japan). First, RBCs, WBCs, and platelets were counted immediately after blood collection. Second, freshly prepared PRP and PRGF samples were directly submitted for the blood cell count. The obtained values were adjusted by their relative dilution factors.

As for A-PRF and CGF preparations, RBC, WBC, and platelet counts were determined by subtracting those counts in RBC fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts in whole blood samples, a method which we designated "indirect subtraction method."

Determination of growth factor and cytokine levels by ELISA

The concentrations of transforming growth factor- $\beta1$ (TGF- $\beta1$), platelet-derived growth factor-BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in frozen PRP, PRGF, A-PRF, and CGF samples were determined using human TGF- $\beta1$, PDGF-BB, and VEGF Quantikine ELISA kits (R&D Systems, Inc., Minneapolis, MN, USA). Concentrations of interleukin- 1β (IL- 1β) and interleukin-6 (IL-6) were determined using the IL- 1β human ELISA kit and IL-6 high sensitivity human ELISA kit (Abcam, Cambridge, MA, USA).

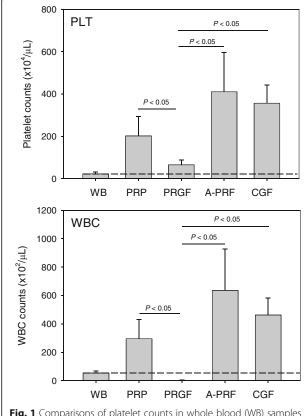
Evaluation of cell proliferation

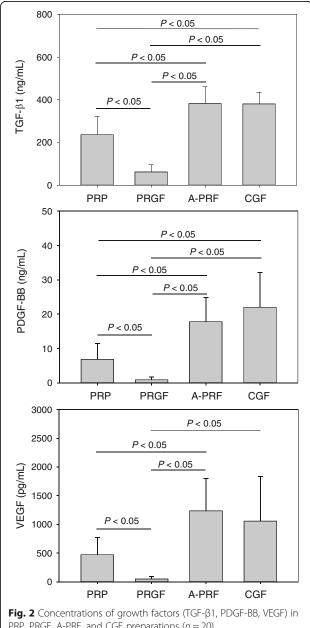
Because alveolar periosteum is closely contributed to periodontal skeletal tissue regeneration, we used human alveolar bone-derived periosteal cells for evaluation of efficacy of the PRP derivatives. The periosteal cells were obtained and expanded as described below. With informed consent, human periosteum tissue segments were aseptically dissected from the periodontal tissues of the healthy buccal side of the retromolar region of the mandibles of non-smoking volunteers [10]. Small periosteum pieces were expanded to form cell-multilayered periosteal sheets (\$\phi 30-40\$ mm) in humidified 5 % CO2, 95 % air at 37 °C with medium 199 (Invitrogen, Carlsbad, CA, USA) supplemented with 10 % fetal bovine serum (FBS) (Invitrogen), 25 µg/mL ascorbic acid 2-phosphate, and antibiotics. Then, the periosteal sheets were enzymatically digested to release single cells. The resulting cells were further expanded in DMEM supplemented with 10 % FBS.

Single cells were seeded at a density of 1×10^4 in 6-well plates and pre-cultured for 24 h in 1 % FBS-containing DMEM. The medium was replaced with the same fresh medium containing PRP, PRGF, A-PRF extract (A-PRFext) or CGF extract (CGFext) (0.625, 1.25, 2.5, 5.0, 10 %), and the cells were further incubated for 48 h. Because embedded in fibrin gel by the treatment of PRP or PRGF, cells were not enzymatically harvested for determining cell counts. Instead, cells were photographed and counted in three randomly selected views using Image-PRO Plus software (Media Cybernetics Manufacturing, Warrendale, PA, USA) [11] (n = 4). Although cells were not embedded in the medium containing A-PRFext or CGFext, to compare these efficacies with those of PRP or PRGF, cell proliferation was evaluated by the same method.

Statistical analysis

The data were reported as the mean value ± standard deviation (SD). For multi-group comparisons, statistical analyses were performed to compare the mean values using one-way analysis of variance (ANOVA) followed by Dunn's or Tukey's multiple comparison test (SigmaPlot 12.5; Systat Software, Inc., San Jose, CA, USA). *P* values <0.05 were considered significant.

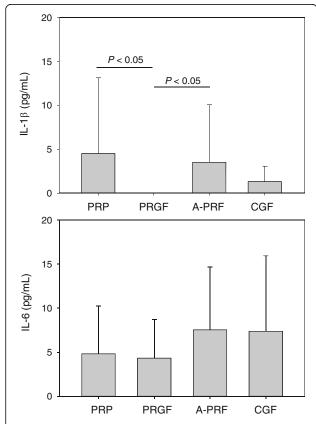


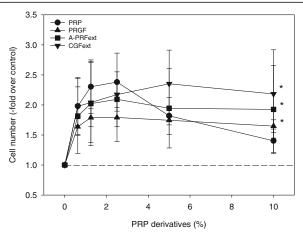

Fig. 1 Comparisons of platelet counts in whole blood (WB) samples and PRP and PRGF, A-PRF and CGF preparations (n = 12 (A-PRF, CGF) or 20 (PRP, PRGF))

Results

Numbers of platelets in PRP and PRGF preparations are shown in Fig. 1 (upper panel). Platelets were significantly concentrated both in the PRP and PRGF preparations, and the concentration rate of PRP preparations was substantially higher than that of PRGF preparations (8.79-fold vs. 2.84-fold). Numbers of platelets in A-PRF and CGF preparations calculated by the indirect subtraction method are also shown in Fig. 1 (upper panel). Platelets were significantly concentrated also in both A-PRF and CGF preparations with the concentration rates of 17.85fold and 15.51-fold, respectively.

Numbers of WBCs in PRP and other PRP derivatives are shown in Fig. 1 (lower panel). WBCs were similarly concentrated in these platelet-concentrated preparations (PRP: 5.51-fold, A-PRF: 11.87-fold, CGF: 8.63-fold). However, only an exception was PRGF preparations; WBCs were almost completely eliminated from PRGF preparations (0.015-fold).


The concentrations of growth factors in PRP, PRGF, A-PRF, and CGF preparations are shown in Fig. 2. The order of growth factor levels (TGF-β1, PDGF-BB, VEGF) were A-PRF ≥ CGF > PRP >> PRGF. PRGF preparations contained the lowest amounts of growth factors.


PRP, PRGF, A-PRF, and CGF preparations (n = 20)

The concentrations of inflammatory cytokines in PRP, PRGF, A-PRF, and CGF preparations are shown in Fig. 3. IL-1β in PRGF preparations was under detectable levels, while it showed a similar level in other three preparations. For IL-6, in contrast, there were no significant differences among these preparations.

The effects of individual PRP derivatives on the proliferation of human periosteal cells are shown in Fig. 4. As shown in the preceding study [12], PRP preparations exerted a biophasic effect with the maximal effects observed at 2.5 %, while in PRGF preparations, A-PRFext and CGFext stimulated cell

Fig. 3 Concentrations of the pro-inflammatory cytokines (IL-1 β , IL-6) in PRP, PRGF, A-PRF, and CGF preparations (n = 20)

Fig. 4 Effects of PRP, PRGF, A-PRF, and CGF on the proliferation of human periosteal cells. Cells were treated with PRP preparations, PRGF preparations, A-PRF extracts, or CGF extracts at the indicated doses for 48 h in 1 % FBS-containing medium. *P< 0.05 compared with the controls without nay addition (n = 4)

proliferation in a dose-dependent manner (0.625–10 %). The apparent order of potency was PRP > CGF > A-PRF > PRGF.

Discussion

Although the growth factor contents in PRF and CGF preparations and their bioactivities have been demonstrated in in vitro studies by several independent groups [8-11, 13-20], many clinicians still believe that the regenerative effects of PRF/CGF are solely due to fibrin clots. We speculate that this discrepancy may be caused by two major factors. First, the initial report on PRF by Choukroun and his co-workers showed that PDGF-BB, TGF-β1, or IGF-I is not significantly concentrated in PRF preparations [21]. Second, the preparation protocols of PRF extraction are not fully disclosed in several articles and likely varied with the individual groups. In the previous study [7], we demonstrated that intense compression of PRF preparations, which is designated as CGF preparations in this study, with dry gauze fully removes PRF exudate and substantially reduces the content of growth factors. Therefore, we concluded that the major source of growth factors in PRF preparations is its exudate; however, as a minor source, growth factors are thought to be secured by fibrin fibers.

To confirm these observations, we recently examined the angiogenic activity of PRF/CGF preparations in endothelial cell cultures and the chick embryo chorioallantoic membrane (CAM) assay [22]. As a result, it was demonstrated that PRF/CGF preparations are somewhat more potent in angiogenesis than PRP preparations. To further assure the growth factor contents in the self-clotted PRP derivatives, in this study, we compared the growth factor contents in four types of PRP derivatives (PRP, PRGF, A-PRF, CGF) prepared from the same donors. The main finding of this study was that both A-PRF and CGF preparations contained TGF-β1, PDGF-BB, VEGF, IL-1β, and IL-6 at levels similar to or higher than PRP preparations. The expected proliferative effects of both A-PRF and CGF extracts were demonstrated in the in vitro assay using human periosteal cells, which give rise to osteoblasts involved in periodontal skeletal regeneration. Therefore, as do PRP preparations, these self-clotted PRP derivatives are expected to function not only as a scaffolding material but also as a reservoir to deliver certain growth factors and pro-inflammatory cytokines at the implantation sites.

In the previous study [12], we found that PRP and A-PRF preparations exert distinguishable actions on periosteal cell proliferation. Because both IL-1 β and IL-6 are known to be produced by WBCs [23], and because WBCs are not included in PRGF preparations, we thought that the bi-phasic effects of PRP preparations may be attributed to WBCs. Furthermore, if

WBCs are highly concentrated in A-PRF, it is expected that IL-1\beta and IL-6 are concentrated at higher levels to exert negative effects at higher doses of A-PRF extracts in this study. As Choukroun intended [3], we observed that WBCs, as well as platelets, were highly concentrated in A-PRF preparations. Similarly, WBCs were found to be concentrated in CGF preparations. In addition, the inflammatory cytokines were not exceptionally concentrated at higher levels in PRP preparations, and no strong positive correlation between WBC counts and pro-inflammatory cytokine levels was observed in PRP preparations (data not shown). Therefore, we speculate at present that the negative effects of PRP preparations at higher doses may not be due to these pro-inflammatory cytokines or WBCs. However, at the same time, we are concerned how accurately the indirect subtraction method determines WBC and platelet (PLT) counts, because this method does not count any possible adhesion-dependent loss of blood cells or nonuniformity of cell distributions especially in red thrombus. Thus, further studies are needed to perform to obtain convincing evidence to explain this discrepancy.

Conclusions

The present study clearly demonstrated that both A-PRF and CGF preparations contained significant amounts of growth factors, which makes us to believe that A-PRF and CGF preparations would not only function as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application. Accordingly, it is expected that these two preparations are more potently capable of inducing angiogenesis and subsequent wound healing/tissue regeneration than PRP preparations.

Authors' contributions

HM, TO, TW, and TK conceived and designed the study, performed the experiments, and wrote the manuscript. MS, KN, HO, and KU performed the experiments and data analysis. KN and CYS participated in the manuscript preparation. All authors read and approved the final version of the manuscript.

Competing interests

Hideo Masuki, Toshimitsu Okudera, Taisuke Watanebe, Masashi Suzuki, Kazuhiko Nishiyama, Hajime Okudera, Koh Nakata, Kohya Uematsu, Chen-Yao Su, and Tomoyuki Kawase declare that they have no competing interests.

Author details

¹Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan. ²Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan. ³Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. ⁴Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.

Received: 21 June 2016 Accepted: 18 August 2016 Published online: 22 August 2016

References

- Kawase T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology. 2015;103:126–35.
- Anitua E. The use of plasma-rich growth factors (PRGF) in oral surgery. Pract Proced Aesthet Dent. 2001;13:487–93.

- Choukroun J. Advanced PRF, &i-PRF: platelet concentrates or blood concentrates? J Periodont Med Clin Practice. 2014;1:3.
- Corigliano M, Sacco L, Baldoni E. CGF- una proposta terapeutica per la medicina rigenerativa. Odontoiatria. 2010;1:69–81.
- Nakajima Y, Kawase T, Kobayashi M, Okuda K, Wolff LF, Yoshie H. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material. Platelets. 2012;23:594–603.
- Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H, Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol. 2003;74:849–57
- Kobayashi M, Kawase T, Horimizu M, Okuda K, Wolff LF, Yoshie H. A proposed protocol for the standardized preparation of PRF membranes for clinical use. Biologicals. 2012;40:323–9.
- Takeda Y, Katsutoshi K, Matsuzaka K, Inoue T. The effect of concentrated growth factor on rat bone marrow cells in vitro and on calvarial bone healing in vivo. Int J Oral Maxillofac Implants. 2015;30:1187–96.
- Nishimoto S, Fujita K, Sotsuka Y, Kinoshita M, Fujiwara T, Kawai K, Kakibuchi M. Growth factor measurement and histological analysis in platelet rich fibrin: a pilot study. J Maxillofac Oral Surg. 2015;14:907–13.
- Lundquist R, Dziegiel MH, Agren MS. Bioactivity and stability of endogenous fibrogenic factors in platelet-rich fibrin. Wound Repair Regen. 2008;16:356–63.
- Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009:108:56–61.
- Nishiyama K, Okudera T, Watanabe T, Isobe K, Suzuki M, Masuki H, Okudera H, Uematsu K, Nakata K, Kawase T. Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects. Clin Exp Dent Res. 2016:DOI: 10.1002/cre2.26.
- Clipet F, Tricot S, Alno N, Massot M, Solhi H, Cathelineau G, Perez F, De Mello G, Pellen-Mussi P. In vitro effects of Choukroun's platelet-rich fibrin conditioned medium on 3 different cell lines implicated in dental implantology. Implant Dent. 2012;21:51–6.
- Gassling VL, Acil Y, Springer IN, Hubert N, Wiltfang J. Platelet-rich plasma and platelet-rich fibrin in human cell culture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:48–55.
- He L, Lin Y, Hu X, Zhang Y, Wu H. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:707–13.
- Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, Kim ES, Choung PH. Platelet-rich fibrin is a bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng Part A. 2011;17:349–59.
- Passaretti F, Tia M, D'Esposito V, De Pascale M, Del Corso M, Sepulveres R, Liguoro D, Valentino R, Beguinot F, Formisano P, Sammartino G. Growth-promoting action and growth factor release by different platelet derivatives. Platelets. 2014;25:252–6.
- Roy S, Driggs J, Elgharably H, Biswas S, Findley M, Khanna S, Gnyawali U, Bergdall VK, Sen CK. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation. Wound Repair Regen. 2011;19:753–66.
- Lucarelli E, Beretta R, Dozza B, Tazzari PL, O'Connel SM, Ricci F, Pierini M, Squarzoni S, Pagliaro PP, Oprita El, Donati D. A recently developed bifacial platelet-rich fibrin matrix. Eur Cell Mater. 2010;20:13–23.
- Zumstein MA, Berger S, Schober M, Boileau P, Nyffeler RW, Horn M, Dahinden CA. Leukocyte- and platelet-rich fibrin (L-PRF) for long-term delivery of growth factor in rotator cuff repair: review, preliminary results and future directions. Curr Pharm Biotechnol. 2012;13:1196–206.
- Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:e37–44.
- 22. Kobayashi M, Kawase T, Okuda K, Wolff LF, Yoshie H. In vitro immunological and biological evaluations of the angiogenic potential of platelet-rich fibrin preparations: a standardized comparison with PRP preparations. Int J Implant Dent. 2015;1:31.
- 23. Sonnenschein SK, Meyle J. Local inflammatory reactions in patients with diabetes and periodontitis. Periodontol 2000. 2015;69:221–54.

International Journal of Implant Dentistry

a SpringerOpen Journal

RESEARCH Open Access

Enhancement of mechanical strength and in vivo cytocompatibility of porous β-tricalcium phosphate ceramics by gelatin coating

Toshitake Furusawa^{1,2}, Tsutomu Minatoya², Toshimitsu Okudera^{3,4}, Yasuo Sakai⁵, Tomohiro Sato⁶, Yuta Matsushima¹ and Hidero Unuma^{1,2*}

Abstract

Background: In an attempt to prepare scaffolds with porosity and compressive strength as high as possible, we prepared porous β -tricalcium phosphate (TCP) scaffolds and coated them with regenerative medicine-grade gelatin. The effects of the gelatin coating on the compressive strength and in vivo osteoblast compatibility were investigated.

Methods: Porous β -TCP scaffolds were prepared and coated with up to 3 mass% gelatin, and then subjected to thermal cross-linking. The gelatin-coated and uncoated scaffolds were then subjected to compressive strength tests and implantation tests into bone defects of Wistar rats.

Results: The compressive strength increased by one order of magnitude from 0.45 MPa for uncoated to 5.1 MPa for gelatin-coated scaffolds. The osteoblast density in the internal space of the scaffold increased by 40 % through gelatin coating.

Conclusions: Coating porous bone graft materials with gelatin is a promising measure to enhance both mechanical strength and biomedical efficacy at the same time.

Keywords: β-TCP, Gelatin, Compressive strength, Cytocompatibility

Background

Porous hydroxyapatite (HA) and β -tricalcium phosphate (β -TCP) have long been clinically used for bone grafts because they enable perfusion of cells and other factors necessary for bone regeneration and because they allow bone ingrowth [1–3]. There have been a large number of works on the effect of porous structures on biological efficacy. For example, pores larger than 100 mm are essential for bone ingrowth into HA scaffolds [4, 5], and larger pores facilitate faster bone ingrowth [6]. Therefore, much effort has been devoted to the fabrication of

scaffolds with pores as large as possible, and various processing techniques have been reported, although most of them were attempted on HA [7, 8]. Examples include freeze casting [8–10], sponge templating [11, 12], gel casting [13], particle templating [14, 15], whisker sintering [16], robocasting [17], extrusion deposition [18], and slurry foaming [19].

Although larger pores and porosities are favorable for faster bone ingrowth, they deteriorate the mechanical strength of the scaffolds. From a practical viewpoint, the compressive strength needs to be higher than approximately 1.0 MPa in order to avoid collapsing of the scaffolds during the handling for implantation. Therefore, there is a trade-off between the mechanical strength and the porosity. One of the promising methods to reinforce scaffolds without lowering its porosity or biomedical efficacy is to coat the scaffolds with biocompatible polymers

Full list of author information is available at the end of the article

© 2016 Furusawa et al. **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

^{*} Correspondence: unuma@yz.yamagata-u.ac.jp

¹Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan. Yonezawa 992-8510, Japan

²Tohoku Oral Implant Association, 1-7-42 Hachihon-matsu, Sendai 980-0001, Japan

because the infiltration of polymers into the microcracks of the scaffolds reduces the fracture origin [20]. The most widely used polymers are poly(lactic acid)- and poly(caprolactone)-based polymers [14–16, 21–25]. Others include glycerol sebacate [26], gelatin [14, 27], and collagen [28]. When scaffolds were coated with poly(lactic acid) or poly(caprolactone), the compressive strength generally increased [21-25]. However, the effects of those coatings on the biomedical efficacy of the scaffolds differ from report to report. In some cases, in vitro differentiation of MC3T3-E1 preosteoblast cells and bone marrow stroma cells were promoted [21], whereas in other cases, the initial attachment and proliferation were suppressed [16, 23, 26]. Biomedical evaluation was not quantitatively described in some reports [22, 25]. Some studies reported the in vitro cytocompatibility of collagen-coated scaffolds, in which the proliferation and differentiation of MG63 were enhanced [28] and the differentiation of rat-originated osteoblasts was promoted [29]. Still, in vivo evaluation of those polymer-coated scaffolds has been very scarce.

One of the present authors (SY) has developed endotoxin-free gelatin for regenerative medicine [30]. Gelatin is an inherently cytocompatible substance, and its mechanical strength can be enhanced by thermal cross-linking. Therefore, gelatin is a promising substance for the reinforcing coating of porous ceramic scaffolds.

In the present work, we first reinforced porous β -TCP scaffolds by gelatin coating, followed by thermal crosslinking. Then, the resultant scaffolds were evaluated for in vivo cytocompatibility from animal implantation tests.

Methods

Preparation of porous β-TCP blocks

Porous β -TCP scaffolds were prepared in our laboratory by sintering porous green bodies in the following manner. Commercial β -TCP powder (β -TCP -100, Taihei Chemical Industrial Co., Ltd., Osaka, Japan) was ground with an automatic agate mortar for 30 min to crush any coarse agglomeration. Then, 36.84 g of the β -TCP powder was added to the dispersion medium, which was prepared by dissolving 0.325 g of polyvinyl alcohol (polymerization degree 2000) and 3.0 g of an ammonium polyacrylate-based dispersant (Kaocera 2000, Kao Corp., Tokyo, Japan). The mixture was ball milled for 12 h. MgO (0.37 g) was added to suppress the phase transition during sintering, and the mixture was ball milled again for 1 h to prepare a well-dispersed slurry. The solid content of the slurry was approximately 45 vol%.

A foaming agent (6 mL, EMAL D-3-D, sodium polyoxyethylene alkyl ether sulfate, Kao Corp.) was added to 30 g of the slurry. The mixed slurry was then whisked with a kitchen blender. The whisked slurry was poured

into a polymer mold approximately $40 \times 40 \times 50$ mm in volume, frozen with liquid nitrogen vapor, and then lyophilized to give a porous green body. The green body was sintered at 1473 K for 12 h in ambient air to obtain β -TCP scaffolds. The porosity of the as-sintered scaffolds was 92 % as measured by the Archimedes method.

Gelatin coating

Two kinds of gelatin were used: reagent-grade gelatin (Wako Pure Chemicals Ind., Ltd.) for the preliminary experiments and regenerative medicine-grade gelatin (RM-100, Jellice Co., Ltd.) for the final experiments. Porous β -TCP scaffolds were immersed in aqueous solutions containing 0.5, 1.0, or 2.0 mass% gelatin for 30 s, taken out, and the redundant solution was removed by wiping the blocks with paper towels. The β -TCP blocks bearing gelatin solutions were cooled in a refrigerator at 253 K overnight and then dried at room temperature in a vacuum. The dried, gelatin-coated β -TCP scaffolds were subjected to heat treatments in a vacuum to obtain cross-linked gelatin. The cross-linking temperatures were 373, 393, 413, and 433 K, and the duration was 12 h.

Characterization of gelatin-coated β-TCP

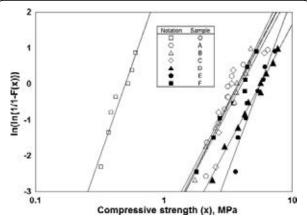
The crystalline phase of the sintered scaffold was ascertained to be $\beta\text{-TCP}$ by X-ray diffractometry (data not shown). The gelatin content was determined by thermogravimetry. The compressive strength of the $\beta\text{-TCP}$ scaffolds, both gelatin-coated and uncoated, using samples approximately $10\times10\times20$ mm in size was measured on an Aikoh testing machine at a crosshead rate of 1.0 mm/min. The compressive strength was defined as the maximum stress before the strain exceeded 10 % of the specimen length. The microstructure was observed with a scanning electron microscope (SEM, e-SEM, Shimadzu Rika Corp., Tokyo, Japan).

Animal implantation test

The animal implantation tests were conducted under the permission of the Ethics Commission on the Animal Tests, Kanagawa Dental College (No. 2014-8.11-1). Male Wistar rats, 7 weeks of age, were used. A bone defect 5.2 mm in diameter was made in the cranial bone of each rat with a dental drill. Either a gelatin-coated or uncoated β -TCP block (samples E and O in Table 1) was implanted into the defect, and the skin was sutured. Each group contained nine rats. After 2 weeks, the experimental sections were retrieved, sliced into thin sections 3.5 μ m in average thickness, decalcified, and stained with hematoxylin–eosin. One thin section was prepared from each rat. From each thin section, pictures from five fields of view were taken, and the number of osteoblasts in a $100 \times 100~\mu$ m area in the internal space

Table 1	Preparation	conditions and	physical	properties o	f gelatin-β-TCP scaffolds

Sample	Gelatin content (mass%)	Cross-link temp (K)	Porosity (%)	Average compressive strength σ (MPa)	Standard deviation	Weibull coefficient
0	0.0	_	92	0.45	0.1	4.4
Α	0.6	433	92	3.36	1.3	2.9
В	1.4	433	91	3.38	1.0	3.2
C	3.0	373	91	3.42	1.1	3.0
D	3.0	393	91	3.59	1.1	2.9
E	3.0	413	91	5.14	1.2	4.2
F	3.0	433	91	5.04	1.6	2.9

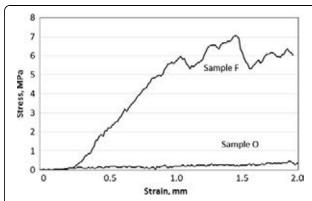

of the scaffold was counted. The statistical significance of the osteoblast density was examined by Student's t test.

Results

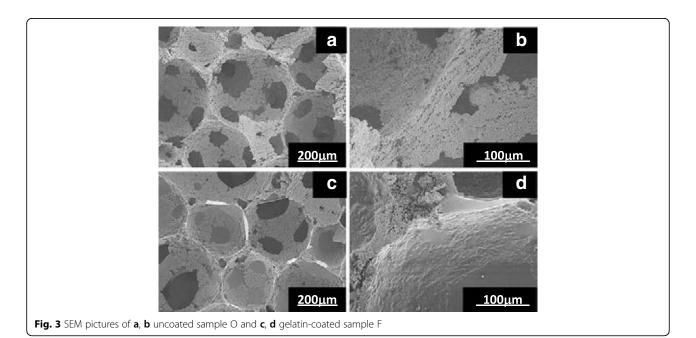
Physical properties of the β-TCP scaffolds

Table 1 summarizes the preparation conditions and physical properties of the gelatin– β -TCP scaffolds. The contents of the gelatin coatings varied from 0.6 to 3.0 mass%, depending on the gelatin concentration in the coating solution. The decrease in porosity after the gelatin coating was small, and all the scaffolds had porosities higher than 90 %.

A Weibull plot of the compressive strengths of the scaffolds is shown in Fig. 1, and the typical stress–strain curves of uncoated sample O and gelatin-coated sample F are shown in Fig. 2. The average compressive strength, standard deviation, and Weibull coefficient of each sample are given in Table 1. The enhancement of the compressive strength by the gelatin coating was remarkable; just 3.0 mass% of gelatin increased the compressive strength by one order of magnitude. The compressive strength increased with increasing gelatin content


Fig. 1 Weibull plots of the compressive strengths of uncoated and gelatin-coated scaffolds

(comparing samples O, A, B, and F) and with increasing cross-linking temperature (comparing samples C, D, E, and F). Cross-linking, however, seemed to terminate at 413 K because there was no significant difference in the compressive strength between samples E and F. In spite of the increase in the compressive strength, the Weibull coefficient did not increase upon gelatin coating.


The microstructures of the uncoated and gelatin-coated scaffolds are shown in Fig. 3. The pore diameter seemed to be quite uniform, ranging from 200 to 500 μ m. The gelatin layer was visible in the interconnections of the pores in the coated scaffold [Fig. 3c]. Under a higher magnification, infiltration of gelatin in the coated scaffolds was observed because pores smaller than a few micrometers were buried and the surface became smoother [Fig. 3d].

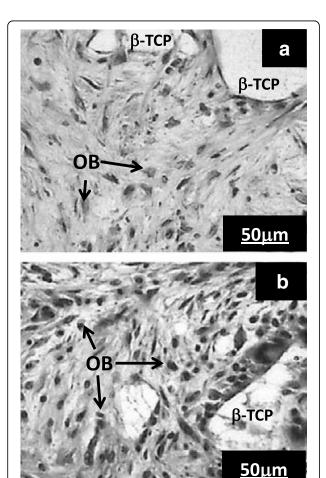

In vivo tests

Figure 4 shows histological photographs of the implanted gelatin-coated [Fig. 4a] and uncoated [Fig. 4b] scaffolds. In both pictures, white areas correspond to unresorbed β -TCP and blue dots correspond to osteoblasts. Newly formed bone was not yet recognized in either picture; however, the osteoblast density seemed

Fig. 2 Examples of stress–strain curves of uncoated sample O and gelatin-coated sample F

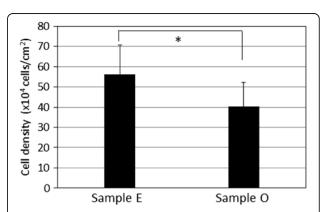


Fig. 4 Histological pictures around implanted scaffolds: **a** uncoated sample O and **b** gelatin-coated sample E. β-TCP and OB stand for unresorbed β -TCP and osteoblast, respectively

to be higher near the gelatin-coated scaffold. The osteoblast density analysis is shown in Fig. 5. The osteoblast density around the gelatin-coated scaffolds (sample E) was higher than that around the uncoated scaffolds (sample O) by approximately 40 % with statistical significance: from 4×10^5 cells/cm³ for the uncoated scaffolds (O) to 5.6×10^5 cells/cm² for the gelatin-coated scaffolds (E).

Discussion

The present gelatin coating effectively reinforced porous β -TCP scaffolds. Generally, the fracture of brittle materials originates from the weakest crack tip where the applied stress is concentrated. The applied stress (σ) is concentrated at the crack tip to a value of σ_m depending

Fig. 5 Osteoblast densities in the internal space of uncoated sample O and gelatin-coated sample E. *p < 0.05

on the depth (*c*) and curvature radius (ρ) of the crack tip, in the following manner:

$$\sigma_m = 2\sigma {c \choose
ho}^{1/2}$$
 (1)

The fracture starts when σ_m exceeds the theoretical strength of the material, σ_{th} . Therefore, the mechanical strength of a material increases as the cracks become less sharp and shallow. As shown in Fig. 3, the coated gelatin seemed to infiltrate into the microcracks of the framework of the scaffolds and flatten the framework surface, which should enhance the compressive strength of the scaffolds.

Presently, porous bone augmentation materials clinically used in Japan are fabricated so that the material possesses porosity as high as possible while retaining minimal compressive strength. To the authors' knowledge, the lowest compressive strength of clinically used $\beta\text{-TCP}$ scaffolds is 0.9 MPa (Osferion, Olympus Terumo Biomaterials, Tokyo, Japan) and its porosity is 75 %. In contrast, we have succeeded in preparing $\beta\text{-TCP}$ scaffolds whose porosity and compressive strength are far higher than those of the commercial scaffolds. If the requisite minimum strength for bone augmentation material is approximately 1.0 MPa, there is a room to further increase the porosity.

In addition to reinforcing β -TCP scaffolds, the gelatin coating increased the osteoblast density near the scaffolds. This seems natural because gelatin has long been known to be a cytocompatible material. In the present study, however, 2 weeks of implantation may have been too short to observe the rates of the new bone formation within the pores of the scaffolds and of the resorption of those. Those studies will have to be conducted to more precisely and quantitatively assess the effect of gelatin coating. At least, still, a higher osteoblast density may imply faster new bone formation.

On the other hand, it has been well established that the dissolution of β -TCP promotes the migration of osteoclasts and osteoblasts [31], and calcium ions released from β -TCP may promote differentiation of osteoblasts [32, 33]. The gelatin coating may slow the dissolution of β -TCP, depending on the amount and thickness of the coating. Therefore, an increase in the osteoblast density alone does not guarantee fast bone regeneration. Although further studies are necessary to elucidate the biomedical efficacy of gelatin coating, this work is the first to report the in vivo effect of the gelatin coating on osteoblast density.

Hydrolysis of gelatin gives peptide oligomers. Among those, tripeptides, which consist of glycine and two other

amino acids, have been proven to promote osteoblast differentiation [31] and in vivo bone healing [34, 35]. There is a possibility, therefore, that the coated gelatin is hydrolyzed to tripeptides, thus further promoting bone formation.

Conclusions

Porous $\beta\text{-TCP}$ scaffolds with approximately 90 % porosity were prepared and coated with gelatin. The gelatin coating and subsequent thermal cross-linking increased the compressive strength by one order of magnitude. The highest compressive strength attained was 5.1 MPa. The gelatin-coated and uncoated scaffolds were implanted into bone defects of the cranial bones of Wistar rats for 2 weeks. The osteoblast density in the internal space of the scaffold was enhanced by 40 % by gelatin coating, implying the possibility of faster bone formation.

Competing interests

Toshitake Furusawa, Tsutomu Minatoya, Toshimitsu Okudera, Yasuo Sakai, Tomohiro Sato, Yuta Matsushima, and Hidero Unuma declare that they have no competing interests.

Authors' contributions

YS, TS, YM, and HU prepared the gelatin-coated scaffolds and evaluated the materials' characteristics. TF, TM, and TO conducted the in vivo tests. All authors read and approved the final manuscript.

Acknowledgements

A part of this work was financially supported by Takahashi Industrial and Economic Research Foundation.

Author details

¹Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan. ²Tohoku Oral Implant Association, 1-7-42 Hachihon-matsu, Sendai 980-0001, Japan. ³Kanagawa Dental College, 82 Inaoka, Yokosuka 238-8580, Japan. ⁴Tokyo Plastic Dental Society, 2-26-2 Oji, Kita-ku, Tokyo 114-0002, Japan. ⁵Jellice Co., Ltd., 4-4-1, Sakae, Tagajo 985-0833, Japan. ⁶Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.

Received: 22 October 2015 Accepted: 2 February 2016 Published online: 06 February 2016

References

- Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:487–510.
- Lew KS, Othman R, Ishikawa K, Yeoh FY. Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl. 2011;27:345–58.
- Best SM, Porter AE, Thian ES, Huang J. Bioceramics: past, present and for the future. J Eur Ceram Soc. 2008;28:1319–27.
- Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biogeosciences. 2000;21:1291–8.
- Ebaretonbofa E, Evans JRG. High porosity hydroxyapatite foam scaffolds for bone substitute. J Porous Mater. 2002;9:257–63.
- Kühne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand. 1994;65:246–52.
- Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7:3813–28.
- Fu Q, Rahaman NR, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J Biomed Mater Res Part B: Appl Biomater. 2008;86B:514–22.

- Fu Q, Rahaman NR, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J Biomed Mater Res Part B: Appl Biomater. 2008;86B:125–35.
- Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biogeosciences. 2006;27:5480–9.
- Sopyan I, Kaur J. Preparation and characterization of porous hydroxyapatite through polymeric sponge method. Ceram Int. 2009;35:3161–8.
- Munar ML, Udoh K, Ishikawa K, Matsuya S, Nakagawa M. Effects of sintering temperature over 1300 °C on the physical and compositional properties of porous hydroxyapatite foam. Dent Mater J. 2006;25:51–8.
- Ramay HR, Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biogeosciences. 2003;24:3293–302.
- Bakhtiari L, Rezaie HR, Hosseinalipour SM, Shokrgozar MA. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram Int. 2010;36:2421–6.
- Akkouch A, Zhang Z, Rouabhia M. A novel collagen/hydroxyapatite/ poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D scaffold for bone regeneration. J Biomed Mater Res Part A. 2011;96A:693–704.
- Shigemitsu Y, Sugiyama N, Oribe K, Rikukawa M, Aizawa M. Fabrication of biodegradable β-tricalcium phosphate/poly(L-lactic acid) hybrids and their in vitro biocompatibility. J Ceram Soc Japan. 2010;118:1181–7.
- Miranda P, Saiz E, Gryn K, Tomsia AP. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2006;2:457–66.
- Wu Q, Zhang X, Wu B, Huang W. Fabrication and characterization of porous HA/β-TCP scaffolds strengthened with micro-ribs structure. Mater Lett. 2013;92:274–7.
- Aoki S, Yamaguchi S, Nakahira A, Suganuma K. Preparation of porous calcium phosphates using a ceramic foaming technique combined with a hydrothermal treatment and the cell response with incorporation of osteoblast-like cells. J Ceram Soc Japan. 2004;112:193–9.
- Johnson AJW, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7:16–30.
- 21. Lee J, Kim IK, Kim TG, Kim YH, Park JC, Kim YJ, et al. Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(L-lactic acid) coating. J Porous Mater. 2013;20:719–25.
- Miao X, Tan DT, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4:638–45.
- Bang LT, Tsuru K, Munar M, Ishikawa K, Othman R. Mechanical behavior and cell response of PCL coated α-TCP foam for cancellous-type bone replacement. Ceram Int. 2013;39:5631–7.
- Martínez-Vázquez FJ, Miranda P, Guiberteau F, Pajares A. Reinforcing bioceramic scaffolds with in situ synthesized ε-polycaprolactone coatings. J Biomed Mater Res Part A. 2013;101A:3551–9.
- Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Coll Surf B: Biointerf. 2009;74:159–66.
- Yang K, Zhang J, Ma X, Kan C, Ma H, Li Y, et al. β-tricalcium phosphate/ poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Mater Sci Eng C. 2015;C56:37–47.
- Landi E, Valentini F, Tampieri A. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater. 2008;4:1620–6.
- Lee MH, You C, Kim KH. Combined effect of a microporous layer and type I collagen coating on a biphasic calcium phosphate scaffold for bone tissue engineering. Mater. 2015;8:1150–61.
- Optira El, Moldovan L, Craciunescu O, Zarnescu O. In vitro behavior of osteoblast cells seeded into a COL/β-TCP composite scaffold. Cent Eur J Biol. 2008;3:31–7.
- Kanayama Y, Aoki C, Sakai Y. Development of low endotoxin gelatin for regenerative medicine. Biol Pharm Bull. 2007;30:237–41.
- Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biogeosciences. 2005;26:5600–8.
- 32. Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21:1649–54.
- 33. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion on osteoblast viability, proliferation

- and differentiation in monolayer and 3D culture. Biogeosciences. 2005;26:4847–55.
- 34. Tsuruoka N, Yamato R, Sakai Y, Yoshitake Y, Yonekura H. Promotion by collagen tripeptide of type I collagen gene expression in human osteoblastic cells and fracture healing of rat femur. Biosci Biotechnol Biochem. 2007;71:2680–7.
- Hata S, Hayakawa T, Okada H, Hayashi K, Akimoto Y, Yamamoto H. Effect of oral administration of high advanced-collagen tripeptide (HACP) on bone healing process in rat. J Hard Tissue Biol. 2008;17:17–22.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com

一般社団法人 東京形成歯科研究会

一般社団法人 東京形成歯科研究会

[2015·2016年活動報告]

一般社団法人 東京形成歯科研究会 会長 古谷田歯科医院 院長 古谷田 泰夫

四半世紀の検証と評価に自信の持てるインプラント臨床を担う施設に

歯科医療(歯科医学)は長年積み重ねてきた膨大な研究と臨床をベースとし、それに新たな様々な事象や術式並びに経過等に疑問を持ち、更に研究を尽くし科学的な検証の後、歯科医療として提供されている。

先日、四半世紀前のインプラント臨床(ブレードインプラント)を現在何の問題も無く機能しているにも拘わらず撤去して欲しいと患者が来院した。聞けば、若い先生に、入っているインプラントを全面否定されたとのことだった。痛みや違和感もなく美味しく食べられているとのこと、説明して撤去の理由が無いことを納得して戴いた。当時は最先端技術であり、欠損を改善する救世主であった筈である。

私達が行っているインプラント臨床も四半世紀後には時間を掛け検証されているだろうし、どの様な評価が下されるのだろうか。 最先端技術は明日には最先端技術で無く成って居るかもしれない、この日進月歩の歯科医療の中で、東京形成歯科研究会は四半世 紀いやそれ以上の検証に耐え得るインプラント臨床を行える確実な知識と技術の提供、日々更新される新しい医療技術の習得など 未来に続く歯科医療情報を広く提供してきた。活動は日本口腔インプラント学会への参加並びに協力を軸とし、設立から係わって いる ISBB への内外への参加。また昨年同様に 10 月には「2016 年度 第 4 回再生医療血液臨床応用 国際特別講演会」を東京大学 鉄門記念講堂にて開催する。

また、大学とのプロジェクト研究を行うことで研究の場の提供も行っている。このような様々な取り組みを通して「四半世紀の検証と評価に自信をもてる人材の育成に、知識・技術・情報発信のステーション施設として取り組んで行きたい。

一般社団法人 東京形成歯科研究会 医療法人社団友秀会 川崎歯科医院 院長 川崎 智之

この度、平成27年度に本口腔インプラント学会専門医試験に合格致しました。

日本口腔インプラント学会には平成 17年より所属していましたが、当初は専門医の取得は、考えておりませんでしたし、またどうようにしたら良いのかも何も分からない状態でした。そして、懇意にさせて頂いている李徳操先生のご紹介により、東京形成歯科研究会に平成 19年に入会させて頂きました。そして奥寺先生の元で、沢山の事を学ばせて頂き、今回の専門医合格という結果を得ることが出来ました。奥寺先生のインプラントへの情熱はとても熱く、そして常人には思いつかないような閃きで、日本の、そして世界の歯科インプラントの進歩に尽力を尽くされていらっしゃいます。その奥寺先生のご指導の結果、今回の専門医試験合格という通知を頂き、真っ先に奥寺先生にご報告した次第です。今後は、より多くの患者様の笑顔を見れるよう、技術、知識ともに研鑽し、日本口腔インプラント学会専門医として精進してまいりたいと思っております。

また、臨床において、患者様とのコミュニケーションは、とても大切であると思います。インプラント専門医を取得する前に、コミュニケーショントレーナーの資格を取得致しました。コミュニケーションスキルアップを望まれる先生方のお力になれればとも思っております。

一般社団法人 東京形成歯科研究会 理事 エルム駅前歯科医院

矢守 俊介

北海道旭川市から東京形成歯科研究会に入会するきっかけは、まずは専門医を取得することが目的ではありましたが、上司の増 木英郎先生より「この会は面白い」と聞いておりました。すなわち奥寺先生をはじめ講師陣の面々の指導内容は長期の臨床経験や 研究の成果に基づいての講義を聞くことができましたし、講師との距離感も近く気さくに質問に答えてくれます。会員の先生方も 積極的に質問するので自信がなく聞いているだけの自分でもとても勉強になりました。正直遠いので王子(東京都北区)まで通う のは大変でしたがいつも帰りは、「今日は勉強になった。来たかいがあった。」とモチベーションが上がり月曜日からの診療に気合 が入ったのを覚えています。

専門医については、奥寺元施設長はもとより小島榮一先生、奥寺俊允先生に大変お世話になりました。専修医を飛ばしていきなり専門医でも大丈夫と教えてもらい、症例の選定から資料の詳細にわたり的確なアドバイスをいただき煩雑な書類の提出を終え、いざ試験に対しても傾向と対策、そして口頭試問についても詳しい状況など教えていただき無事一発で合格することができました。あと事務的なやり取りでは事務の押田さんにも親切にしていただきました。また論文や学会発表については開業医ではなかなか難しいところがありますが、そのあたりのアドバイス、準備、予演会の開催など細かく配慮していただいて何とか乗り切れたと感じています。

一般社団法人 東京形成歯科研究会 まごころ歯科クリニック 院長

荻原 真

ケースプレゼンテーション試験は、独特な緊張感の中、ホテルの大きな宴会場で行われました。部屋の中にポスターを張るためのパネルが何列も並べられ、受験者がまず指定されたパネルにポスターを設置することから始まります。「設置が終わったら速やかに退出するように!」と緊張感あるアナウンスが流れ、その後は待機室で自分の番が来るのを待ちます。自分の番が来ると3人の試験官の先生の前で、ポスターについて発表し、その後、質疑応答の時間があります。私の質疑応答は解剖的な知識から、治療方針を決めた理由に至るまで、内容は多彩でした。緊張のため、頭が真っ白になりそうでした。

しかし、質疑応答の大半の部分は東京形成の予演会で、諸先生方に詳しく指摘して頂いた事項についてでした。

予演会の後にも、奥寺俊允先生が一緒になって親身に解答を考えて下さった内容でしたので、自信をもって答えることができま した。

また、東京形成歯科研究会の講習会では、臨床に役立つ知識は勿論のこと、インプラント治療を行う上で重要な解剖、病理などについても学んでおりましたので、残りの質疑応答も、間違えることなく答えることができました。

今回の試験に合格できたのは、ポスター制作から丁寧にご指導していただいた奥寺俊允先生、予演会や毎月の講習会でお世話になった奥寺元先生をはじめ、諸先生方、事務長のおかげです。本当に本当にありがとうございました。

一般社団法人 東京形成歯科研究会 王子歯科美容外科クリニック

尾崎 忠克

平成 27 年度、日本口腔インプラント学会認定講習会を受講させていただきました、王子歯科美容外科クリニックの尾崎忠克と申します。卒後研修後から王子歯科美容外科クリニックに勤務し、日々臨床においてインプラントと接することが多く、より深くインプラント学を学びたいと思い、受講を決心いたしました。

東京形成歯科研究会では、講師の先生や参加しておられる先生方は熱心な方ばかりで、講義中・講義後も多くディスカッションされ、とても良い刺激になり勉強の励みとなりました。インプラント治療駆け出しである私にとって講義は大変分かりやすく、ライブオペやハンズオン実習もあるため、楽しみながら受講することができ、また、東京形成歯科研究会会員の先生方にも気さくに話しかけて頂けたのでアットホームな環境で勉強することができました。基礎的なことから臨床的な事まで御指導いただき大変有意義な時間となりました。

今後も時間をみて講義、実習には参加させて頂きたいと思います。

最後に東京形成歯科研究会の諸先生方、スタッフの方々、施設長でおられる奥寺元先生に感謝いたします。

[2015年度 受講修了者]

山口 貞博 山口歯科医院

樋口 真弘 医療法人ヒグチ歯科医院

尾崎 忠克 王子歯科美容外科クリニック

岩本 圭輔 王子歯科美容外科クリニック

出澤 政隆 佐倉歯科医院

2015年度 第2回 再生医療 血液臨床応用 国際特別講演会

テーマ 再生医療新法施行 自己血由来の成長因子を用いた再生療法 ~その理論と実際~

主 催 一般社団法人 東京形成歯科研究会/国際血液・幹細胞臨床応用会議 (ISBB)

後 援 一般社団法人 日本再生医療学会

開催日程 2015年11月1日(日曜日) 9:10~17:00

開催場所 東京大学 医学部研究科教育研究棟 14F 鉄門記念講堂(〒113-8654 東京都文京区本郷 7-3-1)

■パネルディスカッション

「基調講演」

・テーマ 血液生体材料の開発と臨床応用に関する現状

講演者 川瀬 知之(新潟大学大学院医歯学総合研究科顎顔面再建学講座歯科薬理学分野 准教授)

・テーマ 再生医療の血液生体材料の現状と将来

講演者 蘇 正堯 ヘンリー・ヤオ・スー (国際血液・幹細胞臨床応用会儀 ISBB 会長、国立陽明大学 教授)

・テーマ インプラント医療について考慮すべき再生医療の最新情報について

講演者 髙戸 毅(東京大学大学院医学系研究科外科学専攻 感覚・運動機能医学講座 口腔外科学分野 教授)

「パネルディスカッション/総括(午前の部)」

テーマ 臨床口腔領域における再生治療の現状と将来

パネリスト 川瀬 知之、蘇 正堯、髙戸 毅、石川 烈、細川 隆司、

「症**例発表」** 第一線で活躍する臨床医による 各種血液臨床応用製剤の現状・・・理論と実際・・・

・テーマ インプラント臨床における CGF の応用

講演者 增木 英郎 (エルム駅前歯科医院、一般社団法人東京形成研究会)

・テーマ PRGF の臨床における使用例

講演者 渡辺 泰典 (あけぼの歯科、一般社団法人東京形成研究会)

・テーマ PRP・PRF を応用した再生療法の最適化

講演者 奥寺 俊允 (王子歯科美容外科クリニック、一般社団法人東京形成研究会)

・テーマ PRF の臨床

講演者 高橋 璋(ハート歯科、PRF 研究会会長)

・テーマ CGF・AFG の基礎及び臨床応用

講演者 黄 炳珍(Bingzhen Huang)(ハルピン医科大学客員教授、大連医科大学客員教授)

「パネルディスカッション(午後の部)/総括」

テーマ 実際の臨床現場における再生治療について ~各種手技の特徴~

パネリスト 増木 英郎、渡辺 泰典、奥寺 俊允、高橋 璋、黄 炳珍 (Bingzhen Huang)

[AFAS 2016 韓国美容外科医学会学術大会/韓国 (2016年4月15日~17日)]

□講演 □懇親会

2016 AFAS 参加にあたり

今回の 2016AFAS におかれまして当時、先生の活躍、実に感謝いたしました。また、ご子息や皆様の発表症例は素晴らしかったです。今後の日本口腔インプラント学会は顎顔面外科手技を使い、アンチエイジングや失った歯周組織の改善により顔貌回復に通じると考えております。共にこの分野の追及を行ってゆきましょう。東京形成歯科研究会の益々のご発展をお祝い致します。

2016 年 4 月 22 日金 鴻基 (韓国インプラント学士会会長)

[2016Bio-Technolojy&Bio-engineering Interbational 國立台灣大學獸醫專業學院國際會議廳/台湾(2016年5月19日)]

□会場_エントランス

日本口腔インプラント学会第35回東北・北海道支部学術大会

「再生医療 血液臨床応用」セミナー」

テーマ: 再生医療新法施行 自己血由来の成長因子を用いた各種生成療法

日 時 2015年11月21日(土) 12:00~12:50

会 場 仙台国際センター 宮城県仙台市青葉区青葉山無番地

主 催 一般社団法人東京形成歯科研究会

座 長 増木 英郎 (一社) 東京形成歯科研究 理事/JSOI 専門医/ISBB 認定医

テーマ:自己血由来の成長因子を用いた再生療法が再生医療新法 第3種に導入された経緯とその対応について

・・・その臨床応用のパラダイム・・・

講演者 奥寺 元 (一社) 東京形成歯科研究会施設長・理事長/ISBB チェアマン

テーマ: 自己血由来の成長因子を用いた再生医療の生成方法と臨床の実際

講演者 奥寺 俊允 (一社) 東京形成歯科研究会 副会長/JSOI 専門医/ ISBB 認定医

□講演

□講演

自己血由来の成長因子を用いた治療において PRP から派生された各種生体素材が臨床で応用されている。その背景はインプラント治療において、組織のより良い治療促進や組織の回復が求められて、初めてインプラント治療が前進します。

今回、再生医療新法律施行のもとに導入されたこれらの方法を解説し、コンプライアンスを遵守し、停滞することなく躍進するための講演であり、臨床家の参考になれば幸いです。

一般社団法人東京形成歯科研究会

会長 古谷田 泰夫

JSOI 第 35 回関東・甲信越支部学術大会

「施設セッション」"再生医療 血液臨床応用"セミナー

テーマ:再生医療新法施行 自己血由来の成長因子を用いた各種生成療法

日 時 2016年2月13日(土) 15:30~16:20

会 場 京王プラザホテル コンコード C (〒1060-5330 東京都新宿区西新宿 2-2-1)

主 催 一般社団法人東京形成歯科研究会

座 長 エルム駅前歯科医院 院長 /(公社)日本口腔インプラント学会専門医 / ISBB 認定医 増木 英郎

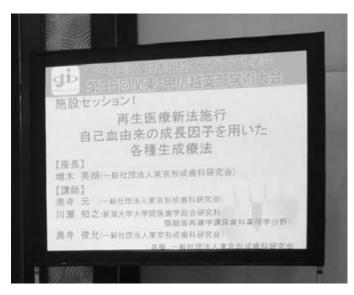
[講演①]

テーマ:自己血由来の成長因子を用いた再生療法が再生医療新法 第3種に導入された経緯とその対応について ・・・・その臨床応用のパラダイム・・・

講 師 ISBB チェアマン/一般社団法人東京形成歯科研究会施設長・理事長 医学博士 奥寺 元

[講演②]

テーマ:血液生体材料臨床応用における PRP 及び PRF 各種 GROWTH FACTOR の基礎と臨床


講演者 新潟大学大学院医歯学総合研究科顎顔面再建学講座 歯科薬理学分野 准教授 川瀬 知之

[講演③]

テーマ:自己血由来の成長因子を用いた臨床の実際

講演者 一般社団法人東京形成歯科研究会 副会長/JSOI 専門医・ ISBB 認定医 奥寺 俊允

□セッション_スライド

□講演者・座長

第 104 回日本美容外科学会 http://www.biyougeka.com/jsas104/

会 期 2016年5月17日(火)・18日(水)

会 場 ANA インターコンチネンタホテル東京(〒107-0052 東京都港区赤坂 1-12-33)

「顎顔面美容口腔外科セッション」

テーマ:血液 PRP 派生再生材料臨床応用―軟組織・硬組織再生の実際―

主 催 一般社団法人東京形成歯科研究会(TPDS) / 国際血液・幹細胞臨床応用会議 (ISBB)

日 程 2016年5月17日(火)15:45~16:45会場Room C (156席)

講演者 奥寺 元/川瀬 知之/増木 英郎/鈴木 正史/菊池 龍介

□会場_エントランス

第104回日本美容外科学会 All Part And Pa

□講演

〇口頭発表

国 内

重度慢性歯周炎患者にインプラント治療を行い、再評価の重要性を再認識した1症例

発表者 江俣 壮一

抄 録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2015_007.pdf

学 会 (公社) 日本口腔インプラント学会 第35回東北・北海道支部学術大会

日程 11月21日(土)

場 所 仙台国際センター (住所) 宮城県仙台市 青葉区青葉山無番地

PRP の採血における貼付用局所麻酔剤ペンレステープ® の VAS 値

VAS value of Local topical anesthetic painlesstape ® on PRP blood

発表者 奥寺 元・西山 和彦

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2015_008.pdf

学 会 第19回公益社団法人日本顎顔面インプラント学会総会

学術大会日程 11月28日(土)

場 所 メルキュールホテル横須賀 パリ B,C

血液生体材料製作におけるポータブル操作ボックス (ポータブルアクリルクリーンベンチ) 内部の ClO2 濃度

発表者 奥寺 元・柳 時悦

抄 録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2015_009.pdf

学 会 第19回公益社団法人日本顎顔面インプラント学会 総会

学術大会日程 11月29日(日)

場 所 メルキュールホテル横須賀 ヴェルサイユ A,B

PRF には血管新生作用がある-PRP との比較-

発表者 奥寺 俊允・渡辺 泰典・鈴木 正史・礒辺 和重・川端 秀男・奥寺 元・川瀬 知之

抄録(PDF)ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_001.pdf

学 会 (公社)日本口腔インプラント学会 第35回関東・甲信越支部

学術大会日程 2016年2月13日・14日場所京王プラザホテル(東京都新宿区)

自家抜去歯を骨造成に応用した症例 一新しく開発したミニバレル手用歯牙粉砕器-

発表者 鳥村 亜矢・久保田 滋・豊田 寿久・川端 秀男・奥寺 元

抄 録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_002.pdf

学 会 (公社)日本口腔インプラント学会 第35回関東・甲信越支部

学術大会日程 2016年2月13日·14日

場 所 京王プラザホテル (東京都新宿区)

骨代謝マカーと自己血液由来PRP派生物質による再生の基礎と臨床

Basic and clinical reproduction by bone metabolism marker and self-blood-derived PRP derived substance

発表者 奥寺 元

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_003.pdf

学 会 第 58 回歯科基礎医学会

学術大会日程 2016年8月24日

場 所 札幌コンベンションセンター(北海道札幌市)

骨再生における PRF/CGF の実際

発表者 増木 英郎

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_004.pdf

学 会 第104回日本美容外科学会

日 程 2016年5月18日

場 所 ANA インターコンチネンタルホテル東京(東京都港区赤坂)

PRP/PRF 局所再生応用とインプラント埋入おける FACAL CONTROL とアンチエイジング症例

発表者 奥寺 元 1) 奥寺 俊允 1) 奥寺 舞 2)

一般社団法人東京形成歯科研究会 1) 王子歯科美容外科クリニック 2)

抄 録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_005.pdf

学 会 第104回日本美容外科学会

日 程 2016年5月18日

場 所 ANA インターコンチネンタルホテル東京(東京都港区赤坂)

口腔美容外科、インプラントの臨床

発表者 鈴木 正史

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_006.pdf

学 会 第 104 回日本美容外科学会

日 程 2016年5月18日

場 所 ANA インターコンチネンタルホテル東京(東京都港区赤坂)

ニュートラルな顔貌をめざして~下顎の最適な位置について

発表者 菊池 龍介

抄 録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_007.pdf

学 会 第104回日本美容外科学会日程2016年5月18日

場 所 ANA インターコンチネンタルホテル東京(東京都港区赤坂)

PRP の採血における貼付用局所麻酔剤とリドカイン・プロピトカイン剤の Visual Analogue Scale(VAS)値比較検討

発表者 鈴木 正史,辻野 哲弘, 大場 英典, 奥寺 俊允, 奥寺 元

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_008.pdf

学 会 第46回(公社)日本口腔インプラント学会

学術大会日程 2016年9月17日

場 所 名古屋国際会議場(愛知県名古屋市熱田区)

自己血液由来の PRP 応用と骨代謝マーカーによる硬組織・軟組織、両者の再生

発表者 奥寺 元

抄 録 (PDF) ダウンロード 準備中

学 会 第 58 回 歯科基礎医学学会学術大会

学術大会日程 2016年8月24日

場 所 札幌コンベンションセンター(北海道札幌市)

組織再生物質 3D 形態形成器の試作

発表者 尾崎 忠克, 原田 庸平, 鈴木 正史, 鈴木 冨士雄, 鳥村 敏明, 奥寺 俊允, 奥寺 元

抄 録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/2016_009.pdf

学 会 第46回(公社)日本口腔インプラント学会

学術大会日程 2016年9月17日

場 所 名古屋国際会議場(愛知県名古屋市熱田区)

4種の血小板濃縮材料における増殖因子レベルの比較研究

発表者 礒辺 和重, 渡辺 泰典, 中村 雅之, 川端 秀男, 鈴木 泰二, 奥寺 俊允, 奥寺 元, 川瀬 知之

学会 第46回(公社)日本口腔インプラント学会

学術大会日程 2016年9月17日

場 所 名古屋国際会議場(愛知県名古屋市熱田区)

海外

Oral aesthetic surgery aiming clinical application of dental implants

発表者 Masashi Suzuki,DDS.Ph,D

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kaigai/2016_001.pdf

学 会 Asia Forum for Aesthetic Surgery & Medicine アジア美容外科学会 AFAS 韓国・ソウル大会

日 程 2016年4月15日~17日

場 所 COEX, Seoul (ソウル)・Korea (韓国)

Application of PRF in implant clinical

発表者 Hideo Masuki, DDS. Ph, D

抄録 (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kaigai/2016_002.pdf

学 会 Asia Forum for Aesthetic Surgery & Medicine アジア美容外科学会 AFAS 韓国・ソウル大会

日 程 2016年4月15日~17日

場 所 COEX, Seoul (ソウル)・Korea (韓国)

○ポスター発表

Cases to the upper and lower jaws many pieces of oral implant placement was facial recovery

発表者 奥寺 元

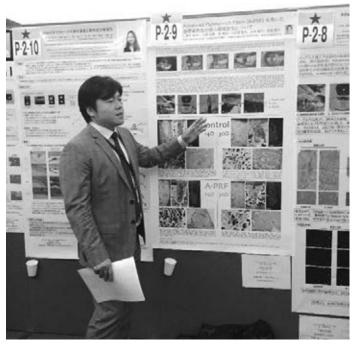
ポスター (PDF) ダウンロード http://www.tpdimplant.com/download/member/publish_kokunai/pos2016_001.pdf

学 会 Osstem Meeting 2016 OSAKA

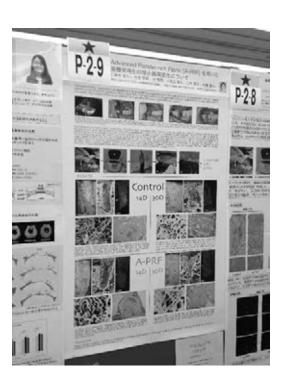
日 程 2016年4月3日

場 所 大阪ハービスホール (大阪府大阪市)

A-PRF を用いた歯槽骨再生の微小循環変化について


発表者 奥寺 俊允

ポスター (PDF) ダウンロード 準備中


学 会 第46回(公社)日本口腔インプラント学会

日 程 2016年9月17日

場 所 名古屋国際会議場(愛知県名古屋市熱田区)

□ポスター

共同研究(TPDS×新潟大学) Cooperative Research

研究題目 血小板濃縮生体材料の生物活性評価と調製法の最適化

研究目的及び内容

近年,自家血小板濃縮生体材料として PRP やこれを改良した PRF や PRGF などいくつかの形態が開発され、歯槽骨再生治療に応用され高い治療効果を挙げている。本研究では、これらさまざまな形態の血小板濃縮生体材料の生化学的性状を明らかにするとともに生体活性を比較評価する。これらの検討を通して、骨再生に最適化した調製法を確立し、臨床応用を支援する科学的根拠を与える。

研究期間 (予定) 契約締結日から平成 32 年 3 月 31 日まで

研究実施場所

大学 新潟大学医歯学総合病院生命科学医療センター 輸血再生医療部門細胞プロセッシング室

企業等 一般社団法人東京形成歯科研究会

企業等研究員 (所属・職・氏名) ※申請書内容 ※実験参加者 別途

企業等にて研究 東京形成歯科研究会 奥寺 元, 奥寺 俊允, 西山 和彦, 鈴木 正史, 渡辺 泰典 (研究における役割) 各種血小板濃縮生体材料を調製し, それらに含まれる増殖因子濃度および生体活性を測定する。

希望する研究担当教員

(所属・職・氏名) 医歯学総合病院 生命科学医療センター 教授 中田光

(研究における役割)各種血小板濃縮生体材料の性状を明らかにするとともに調製法の最適化し、効果的投与法の確立につなげる。

2016 年度 テーマ PRF/CGF の物性解析

研究指導者 川瀬 知之 (新潟大学大学院医歯学研究科 准教授)

参考になる $\{Q\&A\}$ がホームページにアップ (下記・アドレス) されています。

http://www.tpdimplant.com/member/project_kokunai_archive2016.php#kokunai_001

■キックオフミィーテング/実験

日 程 平成28年6月8日(水)

会 場 新潟大学 五十嵐キャンパス

□講義

□実験

■第2回 実験/研究経過報告

日 程 平成28年7月27日(水)

会 場 新潟大学 五十嵐キャンパス

□講義

□実験

[JSOI 認定講習会 / LIVE サージェリー・Hands On]

2015年度 第3回 再生医療 血液臨床応用 国際特別講演会

平成 27 年度第9回 一般社団法人東京形成歯科研究会主催 公益社団法人日本口腔インプラント学会認定講習会

テーマ 再生医療新法施行 自己血由来の成長因子を用いた再生療法~その理論と実際~

日 時 2015 年 12 月 12 日(土曜日) 「Hands On」 / 12 月 13 日(日曜日) 「LIVE OPE/講演会」

会 場 オクデラメディカルインスティテュート(東京都北区王子 2・26・2 ウェルネスオクデラビルズ)

主催 一般社団法人東京形成歯科研究会/国際血液・幹細胞臨床応用会議 (ISBB)

[Hands On]・・・上顎洞底挙上術について・・・

12 月 12 日(土曜日) 「講 義」 基礎と臨床 / 「実 習」 CAS・LASKIT を使用した上顎洞底挙上術のデモと実習 \bigcirc 講師 奥寺俊允 \bigcirc 協賛 株式会社 OSSTEM JAPAN

□実習

[LIVE サージェリー/講演会]

12 月 13 日(日曜日) 10:00~17:00

「症例示説」 血液製剤臨床応用治療併用 第一大臼歯抜歯歯牙粉砕骨使用 骨再生即時埋埋入インプラント手術 「講 演」 "インプラントと歯科再生医療の Molphology(形態学)" 講師 松尾 雅斗 「LIVE OPE」

ペリオトームによる歯根膜断裂と抜歯→不良肉芽除去および掻把/LASER による蒸散→抜去歯牙粉砕顆粒の製作 →血液再生材料の加工 "PRP" "PRF" "トロンビン加工" →通法に従いインプラント埋入/血液加工骨材充填/PRF 処置/縫合→術後処置「ディスカッション (手術後)」

○執刀医/講師 増木 英郎 ○講師 松尾 雅斗 ○示説 奥寺 元/奥寺 俊允

□研修室

レポート 2015 年 12 月開催 LIVE オペ参加にあたり

一般社団法人 東京形成歯科研究会 理事 エルム駅前歯科医院

東京形成歯科研究会のライブオペに参加させていただきました。患者は右下 6.7 抜歯、即時インプラント、同時に骨造性、補填剤としては抜歯した歯を粉砕して使用するという非常に興味深い内容でした。まず、午前中の講義では奥寺元先生から症例提示があり、インプラントオペにあたりミニインプラントを使用した症例の提示など解説されました。そして抜歯の基準についての熱い議論があり、今回の症例の抜歯予定歯はサイナストラクト、分岐部病変や根尖病変もあり、状態はかなり悪いケースでした。根管治療が一番理想的な再生療法であることの確認をしつつ、その後執刀医の増木英郎先生により術前の資料として CT 画像などを使用しての解説をされました。その後、神奈川歯科大学の松尾雅斗先生によりインプラントと歯科再生医療の形態学について解説していただきました。豊富な資料により分かりやすく解説していただきました。午後からはいよいよライブオペへ、まず笑気麻酔をかけ、セキムラさんの担当者より心電図の取り付けから画面の説明などがありました。さらに奥寺俊允先生による血液臨床応用再生医療の実際として、採血の仕方から始まりました。今回は18Gで6本採血、4本で一度回転させて、途中で止めて残り2本採血。抜歯と並行してAPRFの作製の注意点を細かく解説していただきました。直径9センチで1300回転、8分、後に専用の器具で均一に圧をかけてPRFを作製、血球成分はこそぎ落とすようにして、最後はハサミを入れて補填材と混ざりやすいようにしていました。

その後増木先生によるライブオペ開始。まず、右下 6.7 の抜歯は歯根分離しながら、WZ の摘出を丁寧に行ない、ファーストドリルで皮質骨をやぶるのですが骨が硬いタイプのようでした。抜歯したものは、軟組織を除去、乾燥させて、グラインダーで 3 秒、20 秒間振るいにかけ、チャンバーで集め、これを何度か繰り返して、デンティンクリーナーで 10 分、中和材で 3 分、APRF と混ぜていきます。その間にノーベルアクティブを埋入、今回は 4.3×13 mmのフィクスチャーを使用。右下 7 は根尖病変が大きい状態でした。ここで俊允先生がさらに二本採血して 50G で 3 分で IPRF を採とくし補填材に滴下、余分な骨は歯槽中隔の高さまでとって補填材として使用、その後減張切開、補填材を挿入して縫合。最後患者がトイレに行きたくなると血圧が高くなるということもあり、なるほどとハブニングも、勉強になります。増木先生のコメントとしては、まず抜歯が大変であったこと、手前の 5 番との落差があり視野が悪いこと、初期固定を得るために長いインプラントを使用しなければならないのでインストゥルメントがはいるか?など前もってみとく必要があること、あと硬い骨なのでインプラントドリルだけだと時間がかかることなど、コメントされました。最後笑気麻酔がたりなくなるというハブニングがありましたが、それにより笑気麻酔の重要性についてもコメントされていました。実際の臨床もそうですが計画通りにいかない部分もあり臨機応変な対応が求められる場面があっても落ち着いて次の手というふうに行くためには、普段からの学習と復習、そして臨床経験を積むという地道な努力が大事であると改めて感じました。カメラを切り替えながらマイクを使用して、セミナールームとタイムリーにやり取りしながらでとても分かりやすく大変勉強になりました。このような機会があれば是非また参加させていただきたいです。

[JSOI 認定講習会 / Hands On]

平成 27 年度 第12回 一般社団法人東京形成歯科研究会主催 公益社団法人日本口腔インプラント学会認定講習会

「講演 インプラント手術に臨む前に会得すべき外科基本手技~確実で早い手術を目指して~」

慶應義塾大学医学部歯科・口腔外科学教室 准教授 河奈 裕正

「Hands-On 切開縫合実習」

王子歯科美容外科クリニック 副院長/ (一社) 東京形成歯科研究会 副会長 奥寺 俊允

日 時 平成28年3月27日(日)10:00~

場 所 オクデラメディカルインスティテュート セミナー室(東京都北区王子 2-26-2 ウェルネスオクデラビルズ)

□デモ

□実習

平成 28 年度 第 2 回 一般社団法人東京形成歯科研究会主催 公益社団法人日本口腔インプラント学会 認定講習会

「講演 骨補填材の臨床応用」

報徳歯科 院長/(一社)東京形成歯科研究会 理事 豊田 寿久

「Hands - on Submerged GBR」

王子歯科美容外科クリニック 副院長/ (一社) 東京形成歯科研究会 副会長 奥寺 俊允

日 時 平成 28 年 5 月 29 日(日) 10:00~

場 所 オクデラメディカルインスティテュート セミナー室(東京都北区王子 2-26-2 ウェルネスオクデラビルズ)

 $\square GBR$

平成 28 年度 第4回 一般社団法人東京形成歯科研究会主催 公益社団法人日本口腔インプラント学会 認定講習会

「講演 基本的外科手技について。~術後前の消毒/ガウンテクニック/術後の管理~」

和歌山県立医科大学医学部形成外科学講座 講師 宮﨑 英隆

「Hands-On 切開縫合実習」

王子歯科美容外科クリニック 副院長/(一社) 東京形成歯科研究会 副会長 奥寺 俊允

日 時 平成 28 年 7 月 24 日(日) 10:00~

場 所 オクデラメディカルインスティテュート セミナー室(東京都北区王子 2-26-2 ウェルネスオクデラビルズ)

□デモ

□実習

平成 28 年度 第 5 回 一般社団法人東京形成歯科研究会主催 公益社団法人日本口腔インプラント学会 認定講習会

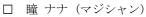
「講演 口腔インプラント埋入手術における全身管理と緊急時の対応」

東京歯科大学口腔健康科学講座/障害者歯科·口腔顔面痛研究室 教授 福田 謙一 「採血実習」

王子歯科美容外科クリニック 副院長/ (一社) 東京形成歯科研究会 副会長 奥寺 俊允

日 時 平成 28 年 8 月 28 日(日) 10:00~

場 所 オクデラメディカルインスティテュート セミナー室(東京都北区王子 2-26-2 ウェルネスオクデラビルズ)


「平成 27 年度 TPDS 主催 JSOI 認定講習会"終了式"」及び「懇親会」

日 程 2016年3月27日(日) 16:30~18:30

場 所(会場) 北とぴあ 16F "天覧の間"(東京都北区王子 1-11-1)

懇親会 (漫談・マジックを楽しむ会)

□ 和田 秀和 (司会・漫談)

「平成 28 年度 TPDS 主催「懇親会」

日 程 2016年9月16日(金)19:30~

場所(会場) 中国料理 味仙 今池本店(名古屋市千種区今池 1-12-10)

□会場

昨年の会報誌でも掲載しておりますが、(公社)日本口腔インプラント学会他認定施設と当会を比較検討し、社会的活動や臨床を行う立場として、東京形成歯科研究会は法人格を取得する必要があると判断し、一般社団法人を取得しております(設立年月日:平成27年4月1日)。

"認定再生医療等委員会"認定 Authorization certificate

昨年の会報誌でも掲載しておりますが、東京形成歯科研究会は平成 27 年 8 月 19 日、厚生労働省関東信越厚生局より "認定再生医療等委員会"の認定を受けております。

第3種の再生医療等提供計画に係る審査等業務を希望される実施医療機関は、一般社団法人東京形成歯科研究会・事務局 (03-3919-5111) までお問合せ下さい。

認定証

- ·厚生労働省関東信越厚生局認定 東京形成歯科研究会認定再生医療等委員会
- ·認定番号: NB3150011
- ・認定区分:第三種再生医療等提供計画のみに係る審査等業務 を実施

特定細胞加工物製造の届出/再生医療等提供計画の提出

「再生医療等の安全性の確保等に関する法律」施行 歯科医院に関連する "届出"及び"提出"について

平成 26 年 11 月 25 日に「再生医療等の安全性の確保等に関する法律(平成 2 5 年法律第 8 5 号)が施行され、多血小板フィブリンゲル PRF (CGF,) や多血小板血漿 (PRP, PRGF) を用いた治療を行うすべての医療機関に以下の通り "届出"及び"提出"が義務付けられました。

「再生医療等提供計画」の"提出"につきましては、添付が義務付けられている「意見書」の発行を厚生労働省関東信越厚生局認定東京形成歯科研究会認定再生医療等委員会(認定番号: NB3150011)で対応します。また、書類作成等の代行を国際血液・幹細胞臨床応用会議(ISBB)で請け負います。"届出"及び"提出"の代行を希望される先生は、(一社)東京形成歯科研究会・事務局(03-3919-5111)までお問合せ下さい。"届出"及び"提出"をせずに再生医療の提供を行った場合、罰則が適用されます。

「届出」及び「提出」は以下2つ

- ①特定細胞加工物製造の届出
- ②再生医療等提供計画の提出

各種申請書作成支援サイト(以下アドレス)で申請手順についてご確認下さい。

http://saiseiiryo.mhlw.go.jp/

②再生医療等提供計画の提出について

●提出には厚生労働省各地方厚生局から認定を受けた"認定再生医療等委員会"での審査後、そこから発行される「意見書」を受け取り、添付することが必須です。

※認定再生医療等委員会について

東京形成歯科研究会は平成 27 年 8 月 19 日、厚生労働省関東信越厚生局より "認定再生医療等委員会"の認定を受けました。 厚生労働省関東信越厚生局認定東京形成歯科研究会認定再生医療等委員会

認定番号: NB3150011

「届出」及び「提出」の代行について

①特定細胞加工物製造の「届出」及び ② 再生医療等提供計画の「提出」の代行を希望される先生は、(一社) 東京形成歯科研究会・ 事務局 (03-3919-5111) までお問合せ下さい。

再生医療等の安全性の確保等に関する法律施行「特定細胞加工物製造の届出」提出書類内 "無菌操作区域=クリーンベンチ"「PRP 等における操作 BOX」の案内

PRP を用いた治療をしている歯科診療所におかれましては、再生医療新法施行に伴い、"無菌操作等区域"として「クリーンベンチ」を設置する必要があります。 奥寺理事長プロデュースの「PRP等における操作 BOX」ですが、以下の通り、操作 BOX は既製品(垂直気流型クリーンブース)を採用し、二酸化塩素ガスにより殺菌状態を向上させることを目的とした製品をセットにして、ご案内します。 仕様は下記をご参照下さい。 購入をご希望の先生はオクデラメディカル/(一社)東京形成歯科研究会・事務局 (TEL 03-3919-5111)までお問合せ下さい。 尚、"簡易型"クリーンベンチにつきましては、市販されている製品は多数ございます。この限りではございません。

「PRP等 操作 BOX]

■操作 BOX「アクリルクリーンフード」(垂直気流型クリーンブース)

[販売価格・仕様]

■操作 BOX 「アクリルクリーンフード」 コンパクトタイプの垂直気流型クリーンブース

○販売価格 61,850 円 (消費税及び梱包・発送費別途)

※BOX 底面開きタイプ・・・BOX の底面はアクリルで覆われていません。

本体サイズ: 500 mm×350 mm×460 mm(W・D・H)/重量: 8 kg/吹出風量:約 1m³/min/吹出風速:約 0.5m/s/

集塵効率: 99.97% 以上 (0.3 μ m 粒子) /フィルター: 不織布製プレフィルター、抗菌・防臭 HEPA フィルター/

抗菌・防臭 HEPA フィルターサイズ: $250 \text{ mm} \times 250 \text{ mm} \times 140 \text{ mm}$ (W・D・H) /モーター: AC モーター/電源: AC100V 50/60Hz 36/38W/電源コード長: 1.8m (2P プラグ) /フード材料: PMMA (アクリル)

■「SC パウダー 」パウダー状 NaClO2 亜塩素酸ナトリウム ※オプション

○販売価格 1箱(20包み入り) <u>5,000円(消費税及び梱包・発送費別途)</u>

成分:ゼオライト、炭酸ナトリム、亜塩素酸ナトリウム (二酸化塩素) 容量 (1包み):2g

〔操作シーン〕

役員名簿 List of the officer

公益社団法人日本口腔インプラント学会認定施設

一般社団法人 東京形成歯科研究会

2016 年度

役員構成

○ 施 設 長 奥寺 元

○ 会 長 古谷田 泰夫

○ 副 会 長 木下 三博 奥寺 俊允 鈴木 正史 月岡 庸之

○ 参 与 鯨岡 昌寿 鈴木 冨士雄

○ 監 事 柳 時悦

○ 相談役 鳥村敏明 北村豊

○ 名誉顧問 小嶋 榮一 高戸 毅 石川 烈 白川 正順

〇 顧 問 河奈 裕正

○ 専務理事 押田 浩文

○ 理 事 相澤 八大 西山 和彦 橋口 英生 原田 庸平 北村 豊 豊田 寿久 渡辺 泰典

関口 剛 増木 英郎 荻原 道 田中 かずさ 川端 秀男 飯塚 智彦 矢守 俊介

菊池 龍介 鈴木 泰二 鯨岡 創一郎

公益社団法人日本口腔インプラント学会

○ 代議員 奥寺 俊允 古谷田 泰夫 北村 豊 柳 時悦

一般社団法人 東京形成歯科研究会

一般社団法人東京形成歯科研究会 2016年 会報誌

2016年10月29日発行

編集·発行 一般社団法人東京形成歯科研究会

発行責任者 一般社団法人東京形成歯科研究会 施設長・理事長 奥寺 元

〒114-0002 東京都北区王子 2-26-2 ウェルネスオクデラビルズ 3F

TEL: 03-3919-5111 FAX: 03-3919-5114